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Abstract. We present a baseline for 360o dense depth estimation from
a single spherical panorama. We circumvent the unavailability of cou-
pled 360o color and depth image datasets by rendering a high quality
360o dataset from existing 3D datasets. We then train a CNN designed
specifically for 360o content in a supervised manner, in order to predict a
360o depth map from a single omnidirectional image in equirectangular
format. Quantitative and qualitative results show the need for training
directly in 360o instead of relying on traditional 2D CNNs.
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1 Introduction

Omnidirectional (360o) content is seeing a sudden rise these last few years as
new hardware and the progressive maturity of stitching technology allows for
easier productions, even extending them to the wider consumer public. Albeit
still growing, it remains a new, fresh medium, that allows for interactive and im-
mersive experiences which has greatly benefited from the recent Virtual Reality
(VR) advances. Nonetheless, given that there are some fundamental differences
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Fig. 1: Sample generated data, from left to right: the 3D scene with a green
highlight denoting the rendered room, color output, corresponding depth map.
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between 360o and traditional 2D media, there has been limited activity in trans-
ferring the advances in various scene understanding tasks from 2D to 360o. One
such case is monocular dense depth estimation, a very important task for a va-
riety of applications. While recent work has shown impressive results [1, 2], this
topic has not been explored at all for the 360o domain. The main reason for this,
is the unavailability of 360o datasets, be it either in a supervised or unsupervised
context with ground truth depth or stereo pairs respectively. For the former case,
the coupling of 360o cameras with 360o (typically LiDaR) depth sensors is an
unfortunate combination due to the differences in resolution and the difficulty in
acquiring depth in a full spherical manner. For the latter case, which is also an
issue for the former, the second viewpoint (i.e. camera) would be visible from the
first one, and vise versa, making most reasonable baselines problematic in terms
of acquiring high quality data. In this work, we circumvent the lack of proper
datasets, by generating a semi-synthetic one, harnessing the availability of large
scale 3D indoor scene datasets, both synthetic(i.e. computer generated) or real-
istic (i.e. scanned buildings). Additionally we design a CNN for dense depth pre-
diction trained on this dataset to serve as a baseline for future research. We offer
both the 360o data and trained models in http://vcl.iti.gr/360-dataset/.

2 360D Dataset

We generate a dataset of 360o indoor scenes with their corresponding depth an-
notations by rendering indoor scenes from recent large scale datasets of textured
3D scenes. We rely on realistic scenes acquired by scanning actual buildings
as well as synthetic computer generated ones. For the former we use the Stan-
ford2D3D [3] and Matterport3D [4] datasets, while for the latter we use the
SunCG [5] dataset. In order to render in 360o, we utilize the ray tracing engine
available in Blender. We use a uniform point light source positioned in the same
position as the camera. Each render offers a rendered color image and its cor-
responding ground truth depth map extracted from the z-buffer. Our generated
360D dataset contains a total of 23524 unique viewpoints, of synthetic and real-

Fig. 2: Our proposed 360o CNN architecture decomposed in blocks.

http://vcl.iti.gr/360-dataset/
https://www.blender.org/
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istic 360o color and depth image data in a variety of indoors contexts (houses,
offices, etc.) in various layouts, with samples shown in Fig. 1.

3 Omnidirectional Depth Estimation

We design a CNN architecture specifically for 360o learning taking into account
two important differences compared to traditional images. Omnidirectional im-
ages, when in equirectangular format, suffer from high distortions along their
vertical axis which increases towards the spheres poles and is also different for
every image row. Therefore, information is scattered horizontally, as we vertically
approach the two poles. We utilize rectangle filters of varying width following the
work of [6] where the CNN’s 2D filters are transferred into distorted row-wise ver-
sions that approximate rectangle shapes. This is shown to increase performance
when applied to the 360o domain. A block consisting of the concatenation of a
traditional square filter and three rectangle ones are used for the first two con-
volutional layers, with the rectangle filter sizes chosen so as to preserve the area
of the square filter.

Fig. 3: Qualitative results on our test split and on samples of the Sun360 dataset
[7]. First four rows from left to right: color image, ground truth depth and pre-
dictions of Laina et al. [1], Liu et al. [2], ours. Last two rows from top to bottom:
unseen realistic samples from the Sun360 [7] dataset, our depth predictions.

Further, unlike 2D images, 360o content captures a scene’s global context.
We exploit this opportunity offered by spherical content and design our network
architecture with the goal of maximizing its receptive field (RF) utilizing dilated
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convolutions [8]. At the same time, we preserve the input images’ spatial res-
olution as much as possible by using progressively increasing dilations instead
of progressive downscaling which diminishes the scene’s structural details. We
derive this inspiration from [9] where this technique was shown to perform better
in a global scene understanding task. Fig. 2 presents our architecture in detail.

We evaluate our 360o depth estimation network’s performance by offering
quantitative comparisons against existing monocular depth estimation methods
- given the unavailability of 360o networks for this task - in Table 1, using
standard metrics as those found in [1, 2]. In addition we present qualitative
results in unseen, realistic data in Fig. 3.

Table 1: Comparison of our CNN performance to Laina et al. [1] and Liu et
al. [2]. (arrows denote direction of better performance)
Network Abs Rel ↓ Sq Rel ↓ RMS ↓ RMS(log) ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Ours 0.0702 0.0297 0.2911 0.1017 0.9574 0.9933 0.9979

Laina et al. [1] 0.3181 0.4469 0.941 0.376 0.4922 0.7792 0.915
Liu et al. [2] 0.4202 0.7597 1.1596 0.44 0.3889 0.7044 0.8774
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