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ABSTRACT

With the advent of consumer grade depth sensors, low-cost volu-
metric capture systems are easier to deploy. Their wider adoption
though depends on their usability and by extension on the practical-
ity of spatially aligning multiple sensors. Most existing alignment
approaches employ visual patterns, e.g. checkerboards, or mark-
ers and require high user involvement and technical knowledge.
More user-friendly and easier-to-use approaches rely on marker-
less methods that exploit geometric patterns of a physical structure.
However, current SoA approaches are bounded by restrictions in
the placement and the number of sensors. In this work, we im-
prove markerless data-driven correspondence estimation to achieve
more robust and flexible multi-sensor spatial alignment. In particu-
lar, we incorporate geometric constraints in an end-to-end manner
into a typical segmentation based model and bridge the intermedi-
ate dense classification task with the targeted pose estimation one.
This is accomplished by a soft, differentiable procrustes analysis
that regularizes the segmentation and achieves higher extrinsic cali-
bration performance in expanded sensor placement configurations,
while being unrestricted by the number of sensors of the volumet-
ric capture system. Our model is experimentally shown to achieve
similar results with marker-based methods and outperform the mark-
erless ones, while also being robust to the pose variations of the
calibration structure. Code and pretrained models are available at
https://vcl3d.github.io/StructureNet/.

Index Terms: Computing methodologies—Artificial in-
telligence—Computer vision—Image segmentation; Comput-
ing methodologies—Artificial intelligence—Computer vision—
Camera calibration; Computing methodologies—Artificial intel-
ligence—Computer vision—3D imaging;

1 INTRODUCTION

Cameras, as well as range imaging sensors, enable the digitization
of real world scenes. Using multiple spatially aligned sensors is a
widely applied and viable approach to volumetrically (i.e. full 3D)
capture real scenes in motion. Research and technology progress
have recently converged to a point where it is possible to comfortably
deploy multi-sensor setups for volumetric capturing. Recent inte-
grated RGB-D sensors [40], as well as the optimization of the stereo
algorithms [20] in combination with high-end GPU processing, have
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enabled higher quality 3D capturing with lower cost systems. Be
it either of average cost as the Holoportation system introduced
in [24] that used 16 near-infrared stereo cameras and 8 color tex-
turing units, or less costly solutions relying on cheaper RGB-D
sensors [35], all approaches rely on a precise volumetric alignment1

of the corresponding sensors. This drives the subsequent processing
that leverages different methods for digitizing human performances
either online with non-rigid registration [8] or near real-time with
template fitting algorithms [2].

Figure 1: We enhance a semantic segmentation model with a soft Procrustes analysis
module which relies on a differentiable soft correspondence estimation. This bridges a
dense classification objective with a regression one, penalizing misalignment between
extracted keypoints C from each labeled box side, and their corresponding box side
centers S of the virtual structure. This improves markerless volumetric sensor alignment
by extending the space sensors can be successfully aligned in, allowing for more
complex placements with minimal human intervention as correspondences are estimated
without any markers, purely from each viewpoint’s depth map with no markers required.
Top: Multi-view concept. Bottom: Pipeline of model’s training procedure.

Nevertheless, a low-cost system is not necessarily easy-to-use
or portable. The most commonly employed approach for multi-
sensor spatial alignment involves moving a checkerboard within
the overlapping field of views of adjacent cameras [3, 24]. It has
the advantage of direct pairwise pose estimation and simultaneous
intrinsic parameter estimation. However, for setups that consist of
a high number of sensors, this method needs to be supported by
bundle adjustment as any errors get accumulated along the sensors’

1We use the terms volumetric and spatial alignment interchangeably in
this document and they both refer to external (i.e. extrinsics) calibration
(i.e. registration) of the system.
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pose chain. Therefore, it only serves as an initial pose estimation and
a multi-sensor sparse feature correspondence establishment. Still,
traditional checkerboard calibration is a cumbersome process that
requires human intervention and technical knowledge to execute
correctly in a timely manner in order to avoid obsolete or ineffective
checkerboard placements.

For example, checkerboard sweeping [4] has been shown to re-
duce the time taken and even improve the quality of the alignment
by calculating finer grained correction factors. Despite such gains,
the external optical tracking system requirement significantly limits
its applicability due to the increased cost and the lack of porta-
bility. Another approach is to use pre-defined markers, such as
e.g. ArUco markers introduced in [10], and associate them with
known or measured landmarks in order to estimate each sensor’s ini-
tial pose [22]. Though, given the stationary nature of this approach,
a dense, geometry-based, global optimization is necessary to ensure
correct alignment. While this ensures minimum human intervention,
it still requires technical knowledge regarding the marker positions
and landmark establishment.

On the other hand, the Octolith structure introduced in [6] poses
as an alternative that minimizes both human intervention and tech-
nical knowledge, yet limiting portability and requiring specialized
assembly. However, the use of a stationary anchor object is a very
powerful alternative if combined with low-cost and easy-to-transport
materials. Motivated by this, Kowalski et al. [22] as well as Alex-
iadis et al. [1] design systems that rely on consumer-grade boxes
that serve as anchor objects, positioned either randomly or in a pre-
defined manner. Both approaches estimated each sensor’s initial
pose with respect to the observed scene’s known geometry, which
is manually set in [22], and implicitly established from the virtual
structure in [1], facilitated by marker detection.

Besides marker-based alignment methods, there are recent
structure-based approaches that solely exploit the prior knowledge of
the structure’s geometry, eliminating the need for any visual markers
like [10], and thus, being truly markerless. In those cases, a single
multi-view capture of the structure, which is placed arbitrarily inside
the cameras’ capture space, is sufficient for sensor pose estimation.
In particular, this technique resulted in methods of multi-sensor vol-
umetric alignment [26, 35], driven by a segmentation model trained
using the known structure object. Such an approach facilitates ease
of use, requires minimum human intervention and has no require-
ments for technical knowledge. However, it has the downside that
a virtual 3D model of the structure’s geometry must be available.
On the other hand, this shortcoming is not severe for simple geo-
metric structures, whose geometry can be trivially authored in a 3D
modelling tool, such the ones used in [26, 35] and in this paper.

A significant drawback of the previously mentioned approaches
is that the segmentation models were trained on very limited camera
poses and/or specific number of sensors in the multi-view capturing
setup to ensure the robustness of the predictions. Thus, albeit being
practical and portable, they are limited by their flexibility in terms
of placements and sensor count.

In this work, we surpass the aforementioned limitations by incor-
porating geometric constrains into a standard segmentation-based
model, bridging the intermediate dense classification task with the
targeted pose estimation one. This is achieved by introducing a
novel, differentiable error term that regularizes the segmentation
predictions of a deep autoencoder, and leads to better extrinsic cali-
bration performance in expanded sensor placement configurations.

More specifically, the main contributions of the paper are:

• A novel geometric objective, which is introduced to further
optimize a deep convolutional autoencoder to estimate the pose
of the calibration structure, after the initial semantic segmen-
tation step. This objective is defined as the distance between
the predicted keypoints and their point correspondences in the
global coordinate system of the structure, and is depicted in

Fig. 1. Note, that the introduced error term is a result of a fully
differentiable variant of the Procrustes analysis.

• The proposed approach is not restricted by the number of
sensors used for the spatial alignment, as the combination of
the semantic segmentation and pose estimation tasks enables
the independent processing of each sensor’s output depthmap.

• A soft attention mechanism is proposed, which forces the
network to implicitly localize the calibration structure. This
mechanism accelerates the convergence of the training process,
while achieving robustness to pose variations.

2 RELATED WORK

Multi-view capture systems were pioneered in [19] within the con-
cept of Virtualized Reality. A dome of 51 cameras was built to
capture users in 3D and replay their performances in free viewpoint
rendering settings. Their SoA evolution is the Panoptic Studio [17]
a truncated pentagonal hexecontahedron structure with 480 low reso-
lution cameras, 31 high resolution ones and 10 RGB-D sensors. The
heterogeneous sensors’ spatial alignment is achieved by projecting
random patterns on a tent that is moved within the structure, with
Structure-from-Motion aligning its calibration shot, and a subse-
quent bundle adjustment step consolidating the results of all shots
into a single result.

Another SoA 3D capture system for high quality free viewpoint
video is introduced by Collet et al. [6]. In particular, 106 cameras,
i.e. a mix between infrared and color ones, which are mounted on
wheeled towers are spatially aligned using a customized octagonal
tower structure called Octolith. This is (re-)positioned and captured
within the volumetric capture area five times to simultaneously cali-
brate the intrinsic and extrinsic parameters of the cameras. Given
that the Octolith has multiple checkerboard patterns on its faces,
pairwise poses between the cameras are initially estimated and then
refined using bundle adjustment. While the former system relies on
green chroma key background and professional studio lights, the
Light Stage system, described in [12], employs 331 programmable
lights in addition to the 90 infrared and color cameras mounted on a
custom spherical dome. All these sensors are spatially aligned using
a traditional checkerboard process with Calibu circle markers estab-
lishing correspondences between cameras sub-groups which are then
used to solve for a global pose solution using bundle adjustment.

Apart from these professional, expensive and non-portable volu-
metric capture setups, the commoditization of sensors in addition
to the need for flexibility and portability has stimulated the devel-
opment of lower-cost solutions. Checkerboard approaches are still
heavily used in low sensor count systems. For example, in [3] and [4]
the authors exploit the availability of external optical tracking to
volumetrically align multiple RGB-D sensors. While the former
work [3] uses static checkerboard sampling, the latter one [4] moved
towards sweeping checkerboard sampling to increase the usability
of the process. These methods leverage the depth information to
additionally output dense look-up tables to correct the geometrical
inputs. This has also been exploited in a more coarse manner by
Deng et al. [7] that estimate multiple local rigid transforms in the
calibration volume to force depth measurement correction. One
of the major drawbacks of the checkerboard multi-sensor calibra-
tion is the reliance on a planar surface, which requires from the
users to densely sample the area multiple times, establishing corre-
spondences in sensor subgroups. As this is a cumbersome process,
that requires additional technical knowledge with respect to the
checkerboard’s positioning, there have been efforts to reduce the
time required (i.e. less samples). In [41] a set of ArUco [10] markers
are attached on the sensors with an additional external one imag-
ing both the checkerboard and the sensor attached markers. In this
way, less samples are required as more constraints are added into
the optimization problem, reducing the time taken to calibrate the
sensors and the chances of errors and/or problematic checkerboard

2



To appear in an IEEE VGTC sponsored conference.

Figure 2: The deep soft Procrustes analysis enables end-to-end geometric supervision for a semantic segmentation model. On the first row, the corresponding tensor operations
are depicted. Starting from a light blue W ×H ×K tensor P containing each of the K classes’ probabilities and the gray 3×W ×H vertices tensor V obtained by de-projecting the
input depthmap, we establish soft correspondences as follows: i) we multiply (⊛) the tensors P and V after expanding (=) – or otherwise, broadcasting – V to 3×W ×H ×K; ii) the
resulting 3×W ×H ×K light green tensor P⊛(V =) is reduced via a mean operation across the spatial dimensions W and H, resulting to the orange 3×K tensor C containing the soft
correspondences’ 3D coordinates; iii) after masking with the ground truth labels and performing a SVD operation (⊚), the remaining correspondences in the yellow tensor C′ are now
aligned and any error function between them can be back-propagated to the semantic segmentation network. The bottom row illustrates each operation’s results visualizations.

placements. More recently, an automatic guidance system was devel-
oped by [32] and [31] to interactively guide the user towards taking
optimal samples.

Aiming to optimize the volumetric alignment process, the 8 view
performance capture system of [34], utilized a wand as the calibra-
tion object. The advantage is that a symmetric object moved within
the scene is visible by more or even all the sensors, effectively reduc-
ing the time taken to establish multi-view correspondences. Apart
from wand-like objects, fully symmetric spheres have also been
used [36] that are detected into the scene and either 2D (for simply
cameras) or 3D (for depth sensors) correspondences are established
for all views and then further optimized to estimate a global solution.
More innovative systems [9] used the tracking offered by Virtual
Reality (VR) controllers and rigidly attach detectable spheres on
them in order to spatially align multiple sensors and simultaneously
achieve alignment with the VR head-mounted display.

Even though the process itself is improved in terms of efficiency
and ease of use by moving beyond the traditionally used planar
objects, the fact that a user needs to manually operate the volu-
metric alignment process introduces management difficulties and
hinders the process. As a result, even earlier systems started uti-
lizing structures positioned at the center of the captured volumes.
OmniKinect [18] attached markers on the faces of a custom cali-
bration target and this is also the case for LiveScan3D [22]. The
main difference of these methods is that for the former, the system is
aligned with respect to a single camera, while for the latter, the users
are required to input the markers’ center 3D coordinates to achieve
alignment on a common, i.e. global, coordinate system. Further,
LiveScan3D then performs a dense 3D iterative closest point opti-
mization step sequentially for each view’s point cloud with respect
to all other views’ point clouds to refine the estimated solution.

Structure-based sensor alignments also use denser patterns, such
as checkerboards, instead of markers in order to concurrently cal-
ibrate each sensor’s intrinsics parameters with a prominent case
being the Octolith used in [6]. A checkerboard cube structure was
used in [16] aligning each sensor with a specific face, with similar
concepts used in [38] and [13]. Both these approaches enhance
the traditional checkerboard with distinct ArUco markers on each
side [38] or Deltille grids [13] which are shown to improve calibra-
tion accuracy and can also be arranged in an icosahedron structure.

A recurring theme for all the aforementioned methods is their
two-step nature. Initially a set of features are extracted, either on the
2D image plane or directly as 3D coordinates. These are estimated in
relation to other sensors/viewpoints or fixed anchors (i.e. structures).
In this initial step, it is also possible to estimate an initial alignment

of all sensors. Then, following this initial sensor pose estimation,
a subsequent dense optimization step offers a more refined and/or
global solution for all sensors simultaneously. This is done either in
a pairwise manner [22], through Levenberg-Marquardt [23] or graph-
based optimization [5, 25]. This is estimated either with respect to
a sensor or the anchor structure that defines the global coordinate
system. Evidently, it is the initial alignment step that estimates the
correspondences and a preliminary pose for each sensor that needs
to be optimized in terms of usability and practicality as this usually
requires user intervention. Users are required to either move objects
within the capturing volume or position markers on a structure and
the structure itself. Our work improves upon recent works on depth-
based volumetric alignment [26, 35] that simplify this process by
turning to pattern- and marker-less initial correspondence and sensor
pose estimation. They exploit the structure’s geometry to densely an-
notate planar regions and extract correspondences at their centroids
to estimate the initial pose. The advantage of these methods is that
they operate purely on the depth information, alleviating any issues
related to pattern/marker detection due to illumination conditions.
Most of the aforementioned approaches rely on features acquired
by the color images of RGB-D sensors to align them. Apart from
detection issues this is prone to color-to-depth misalignment.

Since our approach relies on semantic-driven soft Procrustes anal-
ysis, our work is also related to the recent advances in 6DOF pose
estimation of known objects. While preliminary approaches ap-
proached the problem directly by regressing the 6DOF pose, more
recent approaches have managed to produce higher quality results by
regressing 3D coordinates or keypoints instead. In [29] the heatmaps
of semantic keypoints are regressed on the image with the final
pose estimated by PnP, while in [37] these are automatically learned
during training. PVNet [30] densely regresses vectors pointing at
the keypoints to improve robustness to occlusions. More recent
approaches regress object 3D coordinates at each pixel [27, 39] in a
normalized space to then fit the pose of the objects using their 3D
representations. Finally, PVN3D [15] relies on deep Hough voting
to regress 3D keypoints directly and then fits the pose through least
squares optimization. In this work, we bridge the task of semantic
segmentation of an object and that of pose estimation by adding
geometric constraints during training of the segmentation network.
Essentially, each segment corresponds to a keypoint, which resem-
bles the way this problem is approached in the literature currently by
densely regressing per pixel attributes to allow for the localisation of
keypoints. This improves the model’s performance in larger 6DOF
search spaces and allows us to estimate each sensor’s initial pose to
then drive the subsequent global optimization.
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3 APPROACH

In this section we outline our approach in more detail, starting
with the basic principles of operation of our markerless volumetric
sensor alignment method, which relies on densely extracted semantic
correspondences as well as details about the model’s architecture
and its supervision scheme. We then describe the integration of a
geometric loss that accompanies the explicit dense classification
objective with an implicit pose estimation objective in an end-to-end
manner. This loss is based on a soft correspondence establishment
technique through a differentiable Procrustes analysis.

3.1 Semantic Correspondences
By exploiting the principles introduced in [26] and [35], in this
work we take a two step approach to solve the task of markerless
spatial depth sensor alignment. In the first step, assuming an a-priori
known physical geometric structure, a global coordinate system
is defined anchored at its virtual 3D model. Given a single-view
depth capture of this structure, we estimate the 3D coordinates of the
structure’s keypoints in the sensed data and establish 3D-point corre-
spondences with the structure’s virtual model. Subsequently, we use
those keypoint correspondences to perform sensor pose estimation
with respect to the global coordinate system. As a second final step
that completes the volumetric alignment of multiple sensors, we
perform a dense optimization refinement, using each sensor’s initial
pose estimate, reaching a global solution, as in [35].

The geometric structure that we use here, is the same as the
one presented in [35] and is a simple structure assembled from
commercially available standardized packaging boxes. The idea
behind the first step of our approach, is to train a deep convolutional
autoencoder, which given a depthmap that represents an arbitrary
view-point of the structure, will perform pixel-wise semantic seg-
mentation in order to identify the visible planar sides of each box.
The aforementioned semantic segmentation process facilitates key-
point extraction as the keypoints are placed in the mid-point of the
box’s planar sides. More specifically, a representative keypoint can
be computed by averaging the 3D coordinates of the pixels belong-
ing to each label. Under a correct depth-map labeling and sufficient
side’s visibility, this keypoint has a unique correspondence with the
structure’s virtual model, i.e the center of the respective box’s side.

We use an adapted U-Net autoencoder [33], depicted2 in Fig. 3,
comprising an encoder, a bottleneck, and a decoder. The encoder
consists of 14 convolutional layers (CONV) each one followed by
ReLU activations and downsamples the input depthmap 4 times
using max pooling operators (POOL). Its output is fed into the
bottleneck, which consists of 4 pre-activated [14] residual blocks,
each following a ReLU-CONV-ReLU-CONV structure. The de-
coder shares similar structure with the encoder, using 14 CONV
followed by ReLU non-linearities. Note that the input feature map
is upsampled 4 times prior to the segmentation prediction, using
nearest neighbor interpolation. A so f tmax function follows, which
is applied at each pixel of the decoder output and serves as the initial
estimation of the visible sides of each box.

We train our model by jointly rendering synthetic views and label
maps of the virtual model in a variety of poses. Note that prior work
focus solely on the semantic segmentation task while in this work,
we introduce a novel fully differentiable error term in the network’s
loss function which is based on Procrustes analysis. In particular,
we minimize a total loss that is realised as:

Ltotal =Lseg+λL3D, (1)

where Lseg is the per pixel negative log-likelihood of the predicted
and ground truth planar visible side labels, normalized over the total
number of pixels, L3D is the geometrically derived objective that

2A more detailed version can be found in the supplement.

will be followingly defined in Eq. 3, and λ is a regularization term
that controls the contribution of L3D to the total loss.

In order to achieve faster convergence and improve the perfor-
mance of our autoencoder, we introduce a soft-attention mechanism
that forces the model to implicitly focus at the calibration structure.
The mechanism that can be visualized in Fig. 3, is placed between
the bottleneck part and the decoder of the model. In particular, given
the activation matrix of the last residual block A ∈Rd×h×w, where d
is the number of channels of the activation map, we use a separate
branch to convolve A with a kernel of 1×1 size, and apply a sigmoid
function to normalize the activation values to the [0,1] space, thus
forming an excitation mask M ∈ [0,1]h×w. Note, that M is element-
wise multiplied with A and then upsampled and re-applied to the
activation maps after each upsampling layer of the decoder.

3.2 Soft Procrustes
In order to enhance training by infusing an end task specific goal,
we introduce a geometric objective to optimize, which in this case is
the initial pose estimation through a Procrustes analysis. However,
this requires correspondence estimation that relies on the dense clas-
sification result, which is usually estimated by the non-differentiable
argmax operation. To facilitate end-to-end training, we introduce
a soft correspondence estimation establishment within the network
that allows for gradient back-propagation.

Let P ∈ [0,1]K×H×W , with ∑k Pk,h,w = 1,∀k ∈ {0,1, ...,K −

1},(h,w) ∈ {0,1, ...,H −1}×{0,1, ...,W −1} be a probability map,
with Pk,h,w denoting the probability of pixel (h,w) belonging to
class k, as predicted by the network. This is the output of the seg-
mentation network predicting per pixel probabilities for K classes,
after the so f tmax operation. Let also V ∈ R3×H×W denote the 3D
coordinates of the de-projected depth-map and C ∈R3×K denote the
extracted keypoints of each labeled box side. Then, we can define
our soft correspondence extraction as the weighted average across
each class’s dense probability map:

Ci,k =
∑h,w Pk,h,wVi,h,w

∑h,w Pk,h,w
. (2)

Let S ∈R3×K denote the 3D coordinates of the K box side centers.
In the case of perfectly correct semantic segmentation and provided
that the respective structure’s box sides are visible, the keypoints
computed by Eq. (2) can be perfectly aligned with the global coor-
dinate system using Procrustes analysis after establishing the corre-
spondences C↔ S. This soft correspondence estimation, depicted
in Fig. 2, enables the integration of a geometric pose estimation
objective into the network during training.

This will supplement semantic segmentation through a 3D key-
point correspondence error term:

L3D = ∣∣M ⋅(Ŝ−ΩĈ)∣∣F , (3)

where “⋅” denotes the Hadamard product, ∣∣ ⋅ ∣∣F the matrix Frobe-
nius norm, M = {0,1}3×K the ground truth pixel visibility mask,
and Ŝ,Ĉ the corresponding S,C normalized using the average values
computed across their second dimension (e.g. Ŝ = S− S̄K). Ω repre-
sents the solution to the orthogonal Procrustes problem of aligning
Ŝ with Ĉ via a rotation matrix Ω obtained by the Singular Value
Decomposition (SVD).

4 EXPERIMENTAL RESULTS

In this section we provide the evaluation strategy that we followed
in order to assess the effectiveness of the proposed method. We
begin by discussing the implementation details that apply globally
to our evaluation strategy. Subsequently, we split our evaluation
in two parts. Initially, in Section 4.1 we compare the performance
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Figure 3: Detailed representation of the capturing space and the model architecture of the proposed deep convolutional autoencoder. The model receives a raw depthmap as input and
predicts per pixel segmentation labels. The soft attention mechanism, depicted as “∗” computes a heatmap, which is used to mask the activations of the last Residual Block, as well as
the ones after each upsampling layer.

of the proposed soft Procrustes and soft attention methods against
equivalent CNN networks that have those mechanisms removed,
i.e. assessing the benefits of adopting those mechanisms under the
same overall CNN architecture. Then, taking into account this anal-
ysis and using the best performing model of our proposed method,
in Section 4.2 we compare the performance of this model in the
end-to-end task of extrinsic depth camera calibration in multi-view
setups against SoA marker-based and markerless methods.

Implementation details. Similarly to [35], the proposed CNN is
trained exclusively using a synthetic dataset. We assume a global
coordinate system (GCS) with respect to the virtual 3D model of
the structure, with its origin located at the center of the structure,
the y-axis going up towards the sky, while axii x and z extending
in parallel to the floor. Further, we define a parametric space of
potential camera positions in cylindrical coordinates (ρ ,φ ,z) with
the parametric space’s respective unit vectors ρ̇ and φ̇ being in
parallel to the global x-z plane and ż being aligned with the GCS’s
y axis. For the camera orientation, we define the camera’s local
coordinate system to have z axis pointing to the looking direction,
y axis going down and x axis going right (Please refer to Fig. 3
for a visualization of the coordinate systems). When synthetically
generating a camera pose, we first sample uniformly its position
from a predefined range of ρ , φ and z. Then, for its orientation,
we define a potential look at radius range rl around GCS’s origin
and randomly generate a look direction inside this radius again by
uniform sampling. For all the poses that we generate, we apply a
random rotation around the camera’s z axis up to t degrees after
aligning the camera’s x axis to be parallel to the GCS’s x-z plane. In
all of our experiments we use φ ∈ [0○,360○], z ∈ [−15,75]cm (which
corresponds to a height from the ground [70−160]cm, sufficient
for most multi-view camera setups), lr = 20cm and t = 5○. For each
generated sample, the projection matrix that we used for rendering
the virtual model was randomly sampled from a pool of actual depth
sensor camera intrinsic matrices.

Given a synthetically generated viewpoint, i.e. camera pose, we
render depth and label maps of the structure. Our structure that
consists of four orthogonal parallelepiped packaging boxes, has 24
box sides in total. Since the floor facing sides of the boxes are hardly
ever seen by any camera, we exclude them from labeling, and train
our CNN with 21 classes, accounting for the remaining box sides,
plus one class for pixels located in the background.

In order for our model to better generalize to input depthmaps
captured by actual sensors and further increase its robustness, we in-
troduced a depthmap noise augmentation policy, which simulates, in
a simple way, common noise patterns that appear in depthmaps cap-
tured by commercial-grade depth sensors. In particular, the synthetic
depth-maps are augmented by introducing zero-depth values to the
rendered structure’s borders as well as artificially introducing holes,
to account for regions of invalid or no measurement appeared in

Table 1: Definition of the evaluated models: “S-Att” indicates that the model utilizes
the soft attention mechanism, “S-Proc” indicates the utilization of the soft Procrustes
mechanism, while ρ is sensor-to-structure range.

Model S-Att S-Proc ρ (cm)
m01 150-225
m02 � 150-225
m03 � � 150-225
m04 � 150-275
m05 � � 150-275
m06 � 150-350
m07 � � 150-350

Table 2: Ablation study in the dataset with ρ = 165cm. Mean, Standard Deviation
(STD) and Relative Standard Deviation (RSD) for each metric are reported. The last
column of each metric reports performance decrease wrt the average performance of the
best model. mIoU is expressed in percentage while 3D RMSE is expressed in meters

Dataset 165cm
mIoU 3D RMSE

Model Mean STD RSD Mean STD RSD
m01 89.47% 7.78% 8.7% +0.00% 0.1050 0.0991 94.4% +17.98%
m05 89.43% 5.57% 6.2% -0.05% 0.0890 0.0431 48.4% +0.00%
m04 89.17% 6.78% 7.6% -0.34% 0.0924 0.0587 63.5% +3.82%
m02 89.08% 6.97% 7.8% -0.45% 0.0980 0.0552 56.3% +10.13%
m03 88.51% 6.91% 7.8% -1.08% 0.1270 0.1207 95.0% +42.62%
m07 87.58% 8.54% 9.7% -2.12% 0.1192 0.1124 94.3% +33.94%
m06 87.22% 8.46% 9.7% -2.52% 0.1155 0.1439 124.6% +29.73%

real captured images depicting low to none textured objects (stereo
technology) or objects that consist of absorptive/reflective materials
(time of flight technology).

Regarding the training of the CNN, we choose to initialize the
weights of the proposed deep convolutional autoencoder using
Xavier initialization [11]. Further, we use Adam optimization [21]
with β1 = 0.9. β2 = 0.99. The learning rate is set to 0.0002, while
using λ = 0.1 and a mini-batch size of 16. The training process
converges after approximately 3200K iterations. The model was
implemented using the PyTorch framework [28], while each model
was trained on one NVIDIA GeForce GTX 1080 graphics card, with
each train lasting approximately 4 days each.

4.1 Soft Procrustes and Soft Attention evaluation
In this section we evaluate 7 network models based on the CNN
architecture described in Section 3 and perform an ablation study
with respect to soft Attention and soft Procrustes mechanisms. We
trained the models in 3 different ranges for parameter ρ in order to
assess the effectiveness of the proposed method with respect to the
size of the parametric camera pose space. Table 1 summarizes the
characteristics of each trained model.

Datasets. To assist our evaluation of the aforementioned models,
we created datasets, with real multi-view captures of the proposed
structure. Four (4) Intel RealSense D415 sensors were placed hori-
zontally in a vertical array configuration with the in-between sensor
distance to be approximately 25cm. The array configuration was
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Figure 4: Virtual representations of setups on which methods were evaluated. In more detail, please refer to section 4. From left to right: (a) shows the array configuration used to
capture real data for comparison as described in 4.1; (b) showcases the arc configuration; and (c) shows a full 360 setup with alternating camera heights. Both (b) and (c) used for
calibration setup evaluation and comparison against other methods, further described in 4.2.

later attached on a camera tripod as depicted in Fig. 4 (a). During
the capturing process, the calibration structure was placed at 3 dis-
tinct distances from the cameras, at a range ρ of 165cm, 200cm
and 235cm, each one comprising a distinct dataset. With respect
to the ground floor, the heights of the cameras were approximately
placed at heights 80cm, 105cm, 130cm and 155cm. In order to avoid
relocating the tripod with all the mounted devices and their attached
computing units, i.e. Laptops and PCs, we rotated the structure
around it’s y axis, simulating an all-around camera configuration.
Specifically, the structure was rotated 8 times, ≈ 45○ at a time, cov-
ering a full 360○ view of the calibration structure, resulting into 32
views per distinct distance and 96 views in total.

Metrics. Two different metrics were used to evaluate the con-
sidered models. While, semantic segmentation tasks are usually
evaluated using the mean intersection over union (mIoU) metric
between the predicted and ground truth labeled data, we take a slight
modification of this approach that takes into account the 3D nature of
the underlying pose estimation task. In particular, given the semantic
segmentation predictions of the models, we extract the structure’s
keypoints, estimate the camera’s pose via SVD and render the vir-
tual model of the structure from the computed viewpoint and at last
compute mIoU between rendered and predicted labels. In the case
of a correct pose estimation, the rendered view’s labeling with the
predicted semantic segmentation of the network should be perfect,
resulting in a high mIoU value. As a second metric to evaluate
the performance of the proposed models we use the standard root
mean squared error (RMSE) between the 3D euclidean distances of
the visible points belonging to the aligned point-sets C and S, after
Procrustes analysis.

Evaluation Methodology. We evaluate our models (which are
trained for different ranges of ρ), against our 3 datasets which corre-
spond to different ρ values. First, we perform a comparison against
the Dataset with ρ = 165cm. All models participate in this com-
parison, since this value of ρ was included in the training set of
all models. Then, we compare against the union of datasets with
ρ = 165cm and ρ = 200cm. In this case, models m01, m02, m03
are excluded from the comparison, since their training set does not
include the range ρ = 200cm. Finally, we compare m04, m05, m06
and m07 against the union of all datasets (i.e ρ = 165cm, ρ = 200cm,
ρ = 235cm). Thus, we do a systematic comparison by incrementally
including camera placement configurations which correspond to
increased ρ distances.

Results for dataset 165cm. Table 2 presents the performance of
all studied models with respect to the first dataset of ρ = 165cm. We
begin our analysis with a pair-wise comparison of the models (m01,
m02, and m03) trained in a camera pose parametric space closer to
the dataset’s ρ distance. Our simplest model, m01, does not integrate
any of the soft Attention or soft Procrustes mechanisms, however,
with respect to the mIoU metric, achieves the best performance
among all models. Despite its top performance on average, it has
the worst performance robustness among all the other models we
consider here, as implied by its worst absolute (and relative) standard
deviation (STD / RSD). The next top performing model among

Table 3: Ablation study in the datasets with ρ ∈ {165cm,200cm}. Mean, Standard De-
viation (STD) and Relative Standard Deviation (RSD) for each metric are reported. The
last column of each metric reports performance decrease wrt the average performance
of the best model. mIoU is expressed in percentage while 3D RMSE is expressed in
meters

Dataset 165 & 200 cm
mIoU 3D RMSE

Model Mean STD RSD Mean STD RSD
m05 89.90% 5.12% 5.7% +0.00% 0.0900 0.0400 44.4% +0.00%
m04 89.70% 5.13% 5.7% -0.22% 0.1019 0.0951 93.3% +13.27%
m07 88.37% 7.19% 8.1% -1.70% 0.1091 0.1020 93.5% +21.26%
m06 88.01% 7.23% 8.2% -2.11% 0.1082 0.0910 84.1% +20.26%

Table 4: Ablation study in the datasets with ρ ∈ {165cm,200cm,235cm}. Mean,
Standard Deviation (STD) and Relative Standard Deviation (RSD) for each metric are
reported. The last column of each metric reports performance decrease w.r.t. the average
performance of the best model. mIoU is expressed in percentage while 3D RMSE is
expressed in meters

Dataset 165 & 200 & 235cm
mIoU 3D RMSE

Model Mean STD RSD Mean STD RSD
m05 89.83% 4.53% 5.0% +0.00% 0.1028 0.0793 77.2% +0.00%
m04 89.65% 4.49% 5.0% -0.20% 0.1124 0.0852 75.8% +9.37%
m07 88.56% 7.10% 8.0% -1.42% 0.1141 0.0828 72.6% +11.02%
m06 87.82% 6.91% 7.9% -2.24% 0.1192 0.0918 77.1% +15.98%

the considered set, on the same metric, is m02, which integrates
the proposed soft attention mechanism. While it demonstrates a
performance decrease of 0.45% in mIoU terms, it has a smaller STD
than m01 and performs best among its immediate competitors with
respect to the 3D RMSE metric in both average and STD terms. Our
argument for low robustness of m01 is further supported by the fact
that m01 has the worse STD/RSD in 3D RMSE terms from all the
aforementioned models by a far margin.

Conclusively, we found that applying the proposed soft attention
mechanism the model’s performance in the camera pose estimation
task can be improved (as justified by the 3D RMSE metric), while
increasing its robustness (as justified by its lower STD). Thus, in the
experiments that follow, we integrated this soft attention mechanism
to all our models. Comparing the model with the soft Procrustes
mechanism (m03) with the previous models trained in the same
set, we’ve found that it is the worst performing model among the
previous ones. In that particular case, soft Procrustes did not offer
any performance advantage over the other methods.

However, when we tried to enlarge the camera pose parametric
space of the training set, by increasing the maximum ρ value, we
observed that soft Procrustes could actually offer a performance
improvement. Comparing m05 with m04 (both trained in the same
parametric space) we find that m05, i.e. the one with soft Procrustes,
outperforms m04 in all metrics, both on average and STD terms. A
similar conclusion can be drawn when also comparing m07 with
m06. Soft Procrustes has shown better mIoU performance than
its competitor on average terms, close performance in 3D RMSE
average terms and better performance in 3D RMSE STD/RSD terms.

Overall, among all the models that we trained, m05 with soft
Procrustes performed best in this dataset in all 3D RMSE terms and
marginally close to m01 in mIoU average terms, while being better
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Figure 5: Qualitative comparison between m04 (top) and m05 (bottom) models, show-
casing the gains of the soft Procruses model (m05), as it correctly identifies and labels
the box sides in challenging poses where m04 fails. However, m04 behaves better at the
structure’s faces close to the floor.

in mIoU STD/RSD terms than every other model.
Results for datasets 165 & 200cm. Table 3 presents the per-

formance of the models that are trained in distances ρ larger than
200cm, when evaluating them in the union of the datasets of 165cm
and 200cm. Once again, in this experiment the soft Procrustes model,
m05, showcases the best performance in mIoU and 3D RMSE terms,
being by far the best performing model among the rest. The con-
tribution of soft Procrustes is still visible but less apparent when
comparing m07 to m06. The soft Procrustes model performs better
in mIoU terms but not as good as m06 in RMSE terms.

Results for datasets 165 & 200 & 235cm. Finally, the results of
our last experiment, conducted in the union of our datasets of ρ =

{165,200,235}cm, are depicted in Table 4. The m05 soft Procrustes
model has shown the best performance across all datasets in mIoU
and 3D RMSE terms. Furthermore, the soft Procrustes model m07
has better performance in 3D RMSE terms than m06. However,
regarding mIoU, it shows worse performance in STD/RSD terms,
even though on average it is still better than m06.

Conclusion. Following our previously presented experiments
conducted in incrementally enlarged datasets of camera poses, we
observe than the proposed soft Procrustes mechanism is able to
enhance performance and robustness of the CNN model, with its
contribution becoming more important, as the parametric space of
the training set is enlarged. While in the comparisons of m05 with
m04 the correctness of the proposed argument is strongly supported,
as it is depicted in Fig. 5, the experiments did not fully prove that
m07 is better than m06 in all aspects. We may argue, that the reason
for this might be that these two models have been trained in a much
larger parametric space than the pose space covered by our real-
world captured evaluation datasets. Our experiments support our
thesis at least partially, since m07 has always been better than m06
with respect to at least one metric in all of our cases. Potential future
experimentation may provide stronger proof of this statement.

4.2 Evaluation over existing calibration methods
In this section, the best performing model of our work (m05) is
compared against two other structure-based methods on the camera
extrinsics calibration task, namely [35] and a variant of [22]. In par-
ticular, [22] is a marker-based calibration method which we adapted
to our specific calibration structure. Markers generated by [10], are
placed on every side of each box while ensuring that the center of
the marker is aligned with the center of the respective box’s side.

Figure 6: Calibration results (from left to right): a) marker-based , b) [35] and c)
proposed method, after global refinement. Each column corresponds to a different
method and each row to a different test case. Note that warmer colors indicate large
errors while colder ones indicate lower errors. Row 1: The markerless methods produce
results very close to the marker-based in column 1. Row 2: The marker-based results
are of lower quality, [35] failed to align correctly one of the viewpoints, resulting in an
inaccurate calibration, while the soft Procrustes model successfully aligned all views
with close accuracy to the marker-based method.

Table 5: Quantitative report on the arc dataset across marker-based and proposed
methods evaluated on Mean RMSE, Standard Deviation and Relative Standard Deviation
metrics.

Dataset: arc
Method Mean STD RSD

markerbased refined 0.0136 0.0028 3.76% 0.00%
markerless refined 0.0142 0.0034 4.91% +4.58%
markerbased initial 0.0378 0.0122 10.36% +178.57%
markerless initial 0.0579 0.0126 9.06% +326.37%

Marker detection facilitates correspondence establishment between
the detected marker’s center and the centroid of the respective box’s
side in the structure’s virtual model. In our experiments with the
Intel RealSense D415 devices, apart from depth-maps, we had to
also capture the sensors’ Infrared (IR) stream, which is spatially
aligned with the sensor’s depth stream enabling easy estimation of
the marker’s 3D position in camera space. As in our case, standard
Procrustes Analysis is subsequently used, in order to align the posi-
tions of the markers in camera space, with their corresponding 3D
points in the structure’s virtual 3D model and thus estimating the
camera’s pose with respect to the GCS anchored at the virtual model
of the structure.

While our work extends the markerless method of [35], a direct
comparison with that method is limited, due to the fact that [35] can
only calibrate a multi-view setup of exactly 4 cameras placed on a
very specific configuration.

Datasets. For our evaluation purposes, we captured 3 multi-view
datasets of the calibration structure in varying placement config-
urations that we used in order to compare our method with [22]
and [35]. For the first dataset (“arc”), we used 8 depth sensors in
an arc configuration of ≈ 120○, as depicted in Fig. 4 (b). All the
cameras were placed at two different height levels from the ground
floor, namely 90cm and 110cm and at 3 different distances from the
calibration structure, namely 165cm, 200cm and 235cm, all one at
a time. At each camera placement configuration we made 4 cap-
tures of the structure, while rotating the structure around its y axis
for about ≈ 90○ in between each capture. This dataset contains 24
multi-view captures in total.

The second dataset (“cameras 6 8”) that we used for our eval-
uation, contains multi-view captures of the calibration structure,
captured by two full 360○ camera setups of 6 and 8 cameras respec-
tively, evenly partitioning the circular area around the structure in
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Table 6: Quantitative report on the cameras 6 8 (left half of the table) across marker-based and proposed methods,as well as on cameras 4 (right half of the table) dataset across all
methods, evaluated on Mean, Standard Deviation and Relative Standard Deviation metrics.

Dataset: cameras 6 8 Dataset: cameras 4
Method Mean STD RSD Mean STD RSD

markerbased refined 0.0273 0.0007 2.67% 3.93% 0.0288 0.0008 2.91% 0.00%
markerless refined 0.0262 0.0007 2.64% 0.00% 0.0292 0.0013 4.50% 1.42%
[35] initial N/A 0.0330 0.0011 3.38% 14.62%
[35] N/A 0.0338 0.0016 4.71% 17.18%
markerbased initial 0.0348 0.0042 12.16% 32.63% 0.0361 0.0072 19.90% 25.20%
markerless initial 0.0556 0.0027 4.87% 112.07% 0.0552 0.0069 12.51% 91.44%

each case. All cameras in this dataset configurations were equally
placed further apart from the center of the calibration structure to a
distance of ρ = 200cm, while regarding the camera’s height positions
with respect to the ground floor, they were placed at heights 90cm
(all at the same time) , 110cm (all at the same time), and 90cm and
110 cm interchangeably with respect to their spatial position. At
each camera configuration, we performed 3 captures of the calibra-
tion structure, while rotating it around its y axis for ≈ 20○ (6 cameras
case) and ≈ 15○ (8 cameras case) in-between subsequent captures.
This dataset contains 18 multi-view captures in total.

Finally, a third dataset (“cameras 4”) was recorded, containing
multi-view captures of the calibration structure captured by 4 cam-
eras placed in a perimetrical setup around the structure. The cameras
were placed at ρ = 200cm while their height positions, with respect
to the ground floor, were 90, 100 and 130 cm. A single capture of
the structure was performed in each of the height configurations.
This dataset contains 3 multi-view captures in total.

Metrics. Given the camera pose estimation parameters extracted
by any of the evaluated methods and the captured depthmaps of the
calibration structure, we align each viewpoint’s point cloud to the
GCS. Let dist(A,B) denote a distance metric between point clouds
A and B. We define:

dist(A,B) =

¿
Á
ÁÀ

1
N
∑
v∈A

min
u∈B

∣∣v−u∣∣2 (4)

as the root mean squared (RMS) distance between point clouds A
and B. In the case of the dataset “arc”, the structure is not fully
visible from the set of cameras, since there are areas of the space that
are not covered by the cameras. If A denotes the captured registered
point cloud and B denotes the point cloud of structure’s virtual 3D
model, for this dataset we report d1 = dist(A,B) as defined above.

For the other datasets (“cameras 6 8” and “cameras 4”) we use a
Hausdorff-like RMS metric, ie: d2 = max(dist(A,B),dist(B,A)).
For brevity, in subsequent table results (i.e Tables 5 and 6) we will
refer to the two different metrics d1 and d2 simply, by RMS, while
the exact meaning can be inferred by the respective dataset and the
details that we provided in this paragraph.

Evaluation Methodology. We take a two-step approach in eval-
uating the performance of the studied methods in the task of camera
pose estimation. First, we evaluate the initial alignment of the
viewpoints using the procedure described in the metrics subsection.
Subsequently, similar to [35], we use the graph-based dense op-
timization of [26], to obtain a global, refined, solution using ICP,
formulated with a point-to-plane error. We use the same metric as
described in the respective section to assess the alignment of the
point clouds after the dense optimization.

Results. As depicted in Tables 5 and 6 our method performs an
initial camera pose estimation which is inferior to the rest the SoA
methods. However, despite its inferiority, the estimates it provides
are good enough for the dense optimization algorithm to always
achieve camera pose estimation performance competitive to the SoA
marker-based method. Qualitative comparisons and visualization
of quantitative errors are given in Fig. 6 and Fig. 7. Each figure
showcases, in color coding, a visualization of how each point of the

Figure 7: Calibration results evaluated on arc and cameras 6 8 datasets, marker-based
(top) and our work (bottom). Depicted samples are (from left to right) 8 cameras in a
full 360 setup (top and frontal views at 2 first columns) and arc configuration.

aligned point cloud contributes to the overall distance between the
aligned point cloud and the point cloud of the virtual model.

Furthermore, the proposed method achieved higher robustness
compared to [35] as it did not fail to estimate the initial camera poses
in any of datasets’ samples. Contrariwise, as depicted in Fig. 6, the
method of [35] had a total failure case to estimate camera poses.
Additionally, the proposed method is markerless, as [35], while not
being bound to any restrictions in camera placement configurations
or number of sensors in the multi-view camera setup. Thus, from the
aforementioned discussion it becomes apparent that the proposed
method fairly competes the SoA methods.

5 CONCLUSION

Summarizing, in this work a differentiable variant of the Procrustes
analysis was introduced, which efficiently bridged the intermediate
semantic segmentation task with the targeted pose estimation one.
After an extensive evaluation the presented technique was assessed
to enable more robust learned semantic correspondences to drive the
initial pose estimates for volumetric sensor alignment. Our work
further increases the efficacy of markerless multi-sensor calibration,
taking a step towards even larger flexibility while preserving user
friendliness. Nonetheless, our end-to-end formulation of this soft
Procrustes analysis can be beneficial to the wider pose estimation
task which is now moving towards dense key-point estimation, in-
stead of purely regression the pose estimates. We hope that our work
stimulates further research in this direction as well as aid in easily
calibrating multiple sensors.
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