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ABSTRACT

With the advent of consumer grade depth sensors, low-cost volu-
metric capture systems are easier to deploy. Their wider adoption
though depends on their usability and by extension on the practical-
ity of spatially aligning multiple sensors. Most existing alignment
approaches employ visual patterns, e.g. checkerboards, or mark-
ers and require high user involvement and technical knowledge.
More user-friendly and easier-to-use approaches rely on marker-
less methods that exploit geometric patterns of a physical structure.
However, current SoA approaches are bounded by restrictions in
the placement and the number of sensors. In this work, we im-
prove markerless data-driven correspondence estimation to achieve
more robust and flexible multi-sensor spatial alignment. In particu-
lar, we incorporate geometric constraints in an end-to-end manner
into a typical segmentation based model and bridge the intermedi-
ate dense classification task with the targeted pose estimation one.
This is accomplished by a soft, differentiable procrustes analysis
that regularizes the segmentation and achieves higher extrinsic cali-
bration performance in expanded sensor placement configurations,
while being unrestricted by the number of sensors of the volumet-
ric capture system. Our model is experimentally shown to achieve
similar results with marker-based methods and outperform the mark-
erless ones, while also being robust to the pose variations of the
calibration structure. Code and pretrained models are available at
https://vcl3d.github.io/StructureNet/.

Index Terms: Computing methodologies—Artificial in-
telligence—Computer vision—Image segmentation; Comput-
ing methodologies—Artificial intelligence—Computer vision—
Camera calibration; Computing methodologies—Artificial intel-
ligence—Computer vision—3D imaging;

1 INTRODUCTION

Cameras, as well as range imaging sensors, enable the digitization
of real world scenes. Using multiple spatially aligned sensors is a
widely applied and viable approach to volumetrically (i.e. full 3D)
capture real scenes in motion. Research and technology progress
have recently converged to a point where it is possible to comfortably
deploy multi-sensor setups for volumetric capturing. Recent inte-
grated RGB-D sensors [40], as well as the optimization of the stereo
algorithms [20] in combination with high-end GPU processing, have
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enabled higher quality 3D capturing with lower cost systems. Be
it either of average cost as the Holoportation system introduced
in [24] that used 16 near-infrared stereo cameras and 8 color tex-
turing units, or less costly solutions relying on cheaper RGB-D
sensors [35], all approaches rely on a precise volumetric alignment1

of the corresponding sensors. This drives the subsequent processing
that leverages different methods for digitizing human performances
either online with non-rigid registration [8] or near real-time with
template fitting algorithms [2].

Figure 1: We enhance a semantic segmentation model with a soft Procrustes analysis
module which relies on a differentiable soft correspondence estimation. This bridges a
dense classification objective with a regression one, penalizing misalignment between
extracted keypoints C from each labeled box side, and their corresponding box side
centers S of the virtual structure. This improves markerless volumetric sensor alignment
by extending the space sensors can be successfully aligned in, allowing for more
complex placements with minimal human intervention as correspondences are estimated
without any markers, purely from each viewpoint’s depth map with no markers required.
Top: Multi-view concept. Bottom: Pipeline of model’s training procedure.

Nevertheless, a low-cost system is not necessarily easy-to-use
or portable. The most commonly employed approach for multi-
sensor spatial alignment involves moving a checkerboard within
the overlapping field of views of adjacent cameras [3, 24]. It has
the advantage of direct pairwise pose estimation and simultaneous
intrinsic parameter estimation. However, for setups that consist of
a high number of sensors, this method needs to be supported by
bundle adjustment as any errors get accumulated along the sensors’

1We use the terms volumetric and spatial alignment interchangeably in
this document and they both refer to external (i.e. extrinsics) calibration
(i.e. registration) of the system.
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pose chain. Therefore, it only serves as an initial pose estimation and
a multi-sensor sparse feature correspondence establishment. Still,
traditional checkerboard calibration is a cumbersome process that
requires human intervention and technical knowledge to execute
correctly in a timely manner in order to avoid obsolete or ineffective
checkerboard placements.

For example, checkerboard sweeping [4] has been shown to re-
duce the time taken and even improve the quality of the alignment
by calculating finer grained correction factors. Despite such gains,
the external optical tracking system requirement significantly limits
its applicability due to the increased cost and the lack of porta-
bility. Another approach is to use pre-defined markers, such as
e.g. ArUco markers introduced in [10], and associate them with
known or measured landmarks in order to estimate each sensor’s ini-
tial pose [22]. Though, given the stationary nature of this approach,
a dense, geometry-based, global optimization is necessary to ensure
correct alignment. While this ensures minimum human intervention,
it still requires technical knowledge regarding the marker positions
and landmark establishment.

On the other hand, the Octolith structure introduced in [6] poses
as an alternative that minimizes both human intervention and tech-
nical knowledge, yet limiting portability and requiring specialized
assembly. However, the use of a stationary anchor object is a very
powerful alternative if combined with low-cost and easy-to-transport
materials. Motivated by this, Kowalski et al. [22] as well as Alex-
iadis et al. [1] design systems that rely on consumer-grade boxes
that serve as anchor objects, positioned either randomly or in a pre-
defined manner. Both approaches estimated each sensor’s initial
pose with respect to the observed scene’s known geometry, which
is manually set in [22], and implicitly established from the virtual
structure in [1], facilitated by marker detection.

Besides marker-based alignment methods, there are recent
structure-based approaches that solely exploit the prior knowledge of
the structure’s geometry, eliminating the need for any visual markers
like [10], and thus, being truly markerless. In those cases, a single
multi-view capture of the structure, which is placed arbitrarily inside
the cameras’ capture space, is sufficient for sensor pose estimation.
In particular, this technique resulted in methods of multi-sensor vol-
umetric alignment [26, 35], driven by a segmentation model trained
using the known structure object. Such an approach facilitates ease
of use, requires minimum human intervention and has no require-
ments for technical knowledge. However, it has the downside that
a virtual 3D model of the structure’s geometry must be available.
On the other hand, this shortcoming is not severe for simple geo-
metric structures, whose geometry can be trivially authored in a 3D
modelling tool, such the ones used in [26, 35] and in this paper.

A significant drawback of the previously mentioned approaches
is that the segmentation models were trained on very limited camera
poses and/or specific number of sensors in the multi-view capturing
setup to ensure the robustness of the predictions. Thus, albeit being
practical and portable, they are limited by their flexibility in terms
of placements and sensor count.

In this work, we surpass the aforementioned limitations by incor-
porating geometric constrains into a standard segmentation-based
model, bridging the intermediate dense classification task with the
targeted pose estimation one. This is achieved by introducing a
novel, differentiable error term that regularizes the segmentation
predictions of a deep autoencoder, and leads to better extrinsic cali-
bration performance in expanded sensor placement configurations.

More specifically, the main contributions of the paper are:

• A novel geometric objective, which is introduced to further
optimize a deep convolutional autoencoder to estimate the pose
of the calibration structure, after the initial semantic segmen-
tation step. This objective is defined as the distance between
the predicted keypoints and their point correspondences in the
global coordinate system of the structure, and is depicted in

Fig. 1. Note, that the introduced error term is a result of a fully
differentiable variant of the Procrustes analysis.

• The proposed approach is not restricted by the number of
sensors used for the spatial alignment, as the combination of
the semantic segmentation and pose estimation tasks enables
the independent processing of each sensor’s output depthmap.

• A soft attention mechanism is proposed, which forces the
network to implicitly localize the calibration structure. This
mechanism accelerates the convergence of the training process,
while achieving robustness to pose variations.

2 RELATED WORK

Multi-view capture systems were pioneered in [19] within the con-
cept of Virtualized Reality. A dome of 51 cameras was built to
capture users in 3D and replay their performances in free viewpoint
rendering settings. Their SoA evolution is the Panoptic Studio [17]
a truncated pentagonal hexecontahedron structure with 480 low reso-
lution cameras, 31 high resolution ones and 10 RGB-D sensors. The
heterogeneous sensors’ spatial alignment is achieved by projecting
random patterns on a tent that is moved within the structure, with
Structure-from-Motion aligning its calibration shot, and a subse-
quent bundle adjustment step consolidating the results of all shots
into a single result.

Another SoA 3D capture system for high quality free viewpoint
video is introduced by Collet et al. [6]. In particular, 106 cameras,
i.e. a mix between infrared and color ones, which are mounted on
wheeled towers are spatially aligned using a customized octagonal
tower structure called Octolith. This is (re-)positioned and captured
within the volumetric capture area five times to simultaneously cali-
brate the intrinsic and extrinsic parameters of the cameras. Given
that the Octolith has multiple checkerboard patterns on its faces,
pairwise poses between the cameras are initially estimated and then
refined using bundle adjustment. While the former system relies on
green chroma key background and professional studio lights, the
Light Stage system, described in [12], employs 331 programmable
lights in addition to the 90 infrared and color cameras mounted on a
custom spherical dome. All these sensors are spatially aligned using
a traditional checkerboard process with Calibu circle markers estab-
lishing correspondences between cameras sub-groups which are then
used to solve for a global pose solution using bundle adjustment.

Apart from these professional, expensive and non-portable volu-
metric capture setups, the commoditization of sensors in addition
to the need for flexibility and portability has stimulated the devel-
opment of lower-cost solutions. Checkerboard approaches are still
heavily used in low sensor count systems. For example, in [3] and [4]
the authors exploit the availability of external optical tracking to
volumetrically align multiple RGB-D sensors. While the former
work [3] uses static checkerboard sampling, the latter one [4] moved
towards sweeping checkerboard sampling to increase the usability
of the process. These methods leverage the depth information to
additionally output dense look-up tables to correct the geometrical
inputs. This has also been exploited in a more coarse manner by
Deng et al. [7] that estimate multiple local rigid transforms in the
calibration volume to force depth measurement correction. One
of the major drawbacks of the checkerboard multi-sensor calibra-
tion is the reliance on a planar surface, which requires from the
users to densely sample the area multiple times, establishing corre-
spondences in sensor subgroups. As this is a cumbersome process,
that requires additional technical knowledge with respect to the
checkerboard’s positioning, there have been efforts to reduce the
time required (i.e. less samples). In [41] a set of ArUco [10] markers
are attached on the sensors with an additional external one imag-
ing both the checkerboard and the sensor attached markers. In this
way, less samples are required as more constraints are added into
the optimization problem, reducing the time taken to calibrate the
sensors and the chances of errors and/or problematic checkerboard
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Figure 2: The deep soft Procrustes analysis enables end-to-end geometric supervision for a semantic segmentation model. On the first row, the corresponding tensor operations
are depicted. Starting from a light blue W ×H ×K tensor P containing each of the K classes’ probabilities and the gray 3×W ×H vertices tensor V obtained by de-projecting the
input depthmap, we establish soft correspondences as follows: i) we multiply (⊛) the tensors P and V after expanding (=) – or otherwise, broadcasting – V to 3×W ×H ×K; ii) the
resulting 3×W ×H ×K light green tensor P⊛(V =) is reduced via a mean operation across the spatial dimensions W and H, resulting to the orange 3×K tensor C containing the soft
correspondences’ 3D coordinates; iii) after masking with the ground truth labels and performing a SVD operation (⊚), the remaining correspondences in the yellow tensor C′ are now
aligned and any error function between them can be back-propagated to the semantic segmentation network. The bottom row illustrates each operation’s results visualizations.

placements. More recently, an automatic guidance system was devel-
oped by [32] and [31] to interactively guide the user towards taking
optimal samples.

Aiming to optimize the volumetric alignment process, the 8 view
performance capture system of [34], utilized a wand as the calibra-
tion object. The advantage is that a symmetric object moved within
the scene is visible by more or even all the sensors, effectively reduc-
ing the time taken to establish multi-view correspondences. Apart
from wand-like objects, fully symmetric spheres have also been
used [36] that are detected into the scene and either 2D (for simply
cameras) or 3D (for depth sensors) correspondences are established
for all views and then further optimized to estimate a global solution.
More innovative systems [9] used the tracking offered by Virtual
Reality (VR) controllers and rigidly attach detectable spheres on
them in order to spatially align multiple sensors and simultaneously
achieve alignment with the VR head-mounted display.

Even though the process itself is improved in terms of efficiency
and ease of use by moving beyond the traditionally used planar
objects, the fact that a user needs to manually operate the volu-
metric alignment process introduces management difficulties and
hinders the process. As a result, even earlier systems started uti-
lizing structures positioned at the center of the captured volumes.
OmniKinect [18] attached markers on the faces of a custom cali-
bration target and this is also the case for LiveScan3D [22]. The
main difference of these methods is that for the former, the system is
aligned with respect to a single camera, while for the latter, the users
are required to input the markers’ center 3D coordinates to achieve
alignment on a common, i.e. global, coordinate system. Further,
LiveScan3D then performs a dense 3D iterative closest point opti-
mization step sequentially for each view’s point cloud with respect
to all other views’ point clouds to refine the estimated solution.

Structure-based sensor alignments also use denser patterns, such
as checkerboards, instead of markers in order to concurrently cal-
ibrate each sensor’s intrinsics parameters with a prominent case
being the Octolith used in [6]. A checkerboard cube structure was
used in [16] aligning each sensor with a specific face, with similar
concepts used in [38] and [13]. Both these approaches enhance
the traditional checkerboard with distinct ArUco markers on each
side [38] or Deltille grids [13] which are shown to improve calibra-
tion accuracy and can also be arranged in an icosahedron structure.

A recurring theme for all the aforementioned methods is their
two-step nature. Initially a set of features are extracted, either on the
2D image plane or directly as 3D coordinates. These are estimated in
relation to other sensors/viewpoints or fixed anchors (i.e. structures).
In this initial step, it is also possible to estimate an initial alignment

of all sensors. Then, following this initial sensor pose estimation,
a subsequent dense optimization step offers a more refined and/or
global solution for all sensors simultaneously. This is done either in
a pairwise manner [22], through Levenberg-Marquardt [23] or graph-
based optimization [5, 25]. This is estimated either with respect to
a sensor or the anchor structure that defines the global coordinate
system. Evidently, it is the initial alignment step that estimates the
correspondences and a preliminary pose for each sensor that needs
to be optimized in terms of usability and practicality as this usually
requires user intervention. Users are required to either move objects
within the capturing volume or position markers on a structure and
the structure itself. Our work improves upon recent works on depth-
based volumetric alignment [26, 35] that simplify this process by
turning to pattern- and marker-less initial correspondence and sensor
pose estimation. They exploit the structure’s geometry to densely an-
notate planar regions and extract correspondences at their centroids
to estimate the initial pose. The advantage of these methods is that
they operate purely on the depth information, alleviating any issues
related to pattern/marker detection due to illumination conditions.
Most of the aforementioned approaches rely on features acquired
by the color images of RGB-D sensors to align them. Apart from
detection issues this is prone to color-to-depth misalignment.

Since our approach relies on semantic-driven soft Procrustes anal-
ysis, our work is also related to the recent advances in 6DOF pose
estimation of known objects. While preliminary approaches ap-
proached the problem directly by regressing the 6DOF pose, more
recent approaches have managed to produce higher quality results by
regressing 3D coordinates or keypoints instead. In [29] the heatmaps
of semantic keypoints are regressed on the image with the final
pose estimated by PnP, while in [37] these are automatically learned
during training. PVNet [30] densely regresses vectors pointing at
the keypoints to improve robustness to occlusions. More recent
approaches regress object 3D coordinates at each pixel [27, 39] in a
normalized space to then fit the pose of the objects using their 3D
representations. Finally, PVN3D [15] relies on deep Hough voting
to regress 3D keypoints directly and then fits the pose through least
squares optimization. In this work, we bridge the task of semantic
segmentation of an object and that of pose estimation by adding
geometric constraints during training of the segmentation network.
Essentially, each segment corresponds to a keypoint, which resem-
bles the way this problem is approached in the literature currently by
densely regressing per pixel attributes to allow for the localisation of
keypoints. This improves the model’s performance in larger 6DOF
search spaces and allows us to estimate each sensor’s initial pose to
then drive the subsequent global optimization.
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3 APPROACH

In this section we outline our approach in more detail, starting
with the basic principles of operation of our markerless volumetric
sensor alignment method, which relies on densely extracted semantic
correspondences as well as details about the model's architecture
and its supervision scheme. We then describe the integration of a
geometric loss that accompanies the explicit dense classi�cation
objective with an implicit pose estimation objective in an end-to-end
manner. This loss is based on a soft correspondence establishment
technique through a differentiable Procrustes analysis.

3.1 Semantic Correspondences

By exploiting the principles introduced in [26] and [35], in this
work we take a two step approach to solve the task of markerless
spatial depth sensor alignment. In the �rst step, assuming an a-priori
known physical geometric structure, a global coordinate system
is de�ned anchored at its virtual 3D model. Given a single-view
depth capture of this structure, we estimate the 3D coordinates of the
structure's keypoints in the sensed data and establish 3D-point corre-
spondences with the structure's virtual model. Subsequently, we use
those keypoint correspondences to perform sensor pose estimation
with respect to the global coordinate system. As a second �nal step
that completes the volumetric alignment of multiple sensors, we
perform a dense optimization re�nement, using each sensor's initial
pose estimate, reaching a global solution, as in [35].

The geometric structure that we use here, is the same as the
one presented in [35] and is a simple structure assembled from
commercially available standardized packaging boxes. The idea
behind the �rst step of our approach, is to train a deep convolutional
autoencoder, which given a depthmap that represents an arbitrary
view-point of the structure, will perform pixel-wise semantic seg-
mentation in order to identify the visible planar sides of each box.
The aforementioned semantic segmentation process facilitates key-
point extraction as the keypoints are placed in the mid-point of the
box's planar sides. More speci�cally, a representative keypoint can
be computed by averaging the 3D coordinates of the pixels belong-
ing to each label. Under a correct depth-map labeling and suf�cient
side's visibility, this keypoint has a unique correspondence with the
structure's virtual model,i.e the center of the respective box's side.

We use an adapted U-Net autoencoder [33], depicted2 in Fig. 3,
comprising an encoder, a bottleneck, and a decoder. The encoder
consists of 14 convolutional layers (CONV) each one followed by
ReLU activations and downsamples the input depthmap 4 times
using max pooling operators (POOL). Its output is fed into the
bottleneck, which consists of 4 pre-activated [14] residual blocks,
each following a ReLU-CONV-ReLU-CONV structure. The de-
coder shares similar structure with the encoder, using 14 CONV
followed by ReLU non-linearities. Note that the input feature map
is upsampled 4 times prior to the segmentation prediction, using
nearest neighbor interpolation. Aso f tmaxfunction follows, which
is applied at each pixel of the decoder output and serves as the initial
estimation of the visible sides of each box.

We train our model by jointly rendering synthetic views and label
maps of the virtual model in a variety of poses. Note that prior work
focus solely on the semantic segmentation task while in this work,
we introduce a novel fully differentiable error term in the network's
loss function which is based on Procrustes analysis. In particular,
we minimize a total loss that is realised as:

L total � L seg� l L 3D; (1)

whereL seg is the per pixel negative log-likelihood of the predicted
and ground truth planar visible side labels, normalized over the total
number of pixels,L 3D is the geometrically derived objective that

2A more detailed version can be found in the supplement.

will be followingly de�ned in Eq. 3, andl is a regularization term
that controls the contribution ofL 3D to the total loss.

In order to achieve faster convergence and improve the perfor-
mance of our autoencoder, we introduce a soft-attention mechanism
that forces the model to implicitly focus at the calibration structure.
The mechanism that can be visualized in Fig. 3, is placed between
the bottleneck part and the decoder of the model. In particular, given
the activation matrix of the last residual blockA >Rd� h� w, whered
is the number of channels of the activation map, we use a separate
branch to convolveA with a kernel of1� 1 size, and apply asigmoid
function to normalize the activation values to the� 0;1� space, thus
forming an excitation maskM >� 0;1� h� w. Note, thatM is element-
wise multiplied withA and then upsampled and re-applied to the
activation maps after each upsampling layer of the decoder.

3.2 Soft Procrustes

In order to enhance training by infusing an end task speci�c goal,
we introduce a geometric objective to optimize, which in this case is
the initial pose estimation through a Procrustes analysis. However,
this requires correspondence estimation that relies on the dense clas-
si�cation result, which is usually estimated by the non-differentiable
argmaxoperation. To facilitate end-to-end training, we introduce
a soft correspondence estimation establishment within the network
that allows for gradient back-propagation.

Let P > � 0;1� K� H� W, with P k Pk;h;w � 1; ¦ k > ˜ 0;1; :::;K �
1• ;ˆh;w• >˜ 0;1; :::;H � 1• � ˜ 0;1; :::;W � 1• be a probability map,
with Pk;h;w denoting the probability of pixel̂h;w• belonging to
classk, as predicted by the network. This is the output of the seg-
mentation network predicting per pixel probabilities forK classes,
after theso f tmaxoperation. Let alsoV >R3� H� W denote the 3D
coordinates of the de-projected depth-map andC >R3� K denote the
extracted keypoints of each labeled box side. Then, we can de�ne
our soft correspondence extraction as the weighted average across
each class's dense probability map:

Ci;k �
P h;wPk;h;wVi;h;w

P h;wPk;h;w
: (2)

Let S>R3� K denote the 3D coordinates of theK box side centers.
In the case of perfectly correct semantic segmentation and provided
that the respective structure's box sides are visible, the keypoints
computed by Eq. (2) can be perfectly aligned with the global coor-
dinate system using Procrustes analysis after establishing the corre-
spondencesC � S. This soft correspondence estimation, depicted
in Fig. 2, enables the integration of a geometric pose estimation
objective into the network during training.

This will supplement semantic segmentation through a 3D key-
point correspondence error term:

L 3D � SSM �ˆ Ŝ� WĈ•SSF ; (3)

where “�” denotes the Hadamard product,SS�SSF the matrix Frobe-
nius norm,M � ˜ 0;1• 3� K the ground truth pixel visibility mask,
andŜ;Ĉ the correspondingS;C normalized using the average values
computed across their second dimension (e.g.Ŝ� S� S̄K). Wrepre-
sents the solution to the orthogonal Procrustes problem of aligning
Ŝ with Ĉ via a rotation matrixW obtained by the Singular Value
Decomposition (SVD).

4 EXPERIMENTAL RESULTS

In this section we provide the evaluation strategy that we followed
in order to assess the effectiveness of the proposed method. We
begin by discussing the implementation details that apply globally
to our evaluation strategy. Subsequently, we split our evaluation
in two parts. Initially, in Section 4.1 we compare the performance
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