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Abstract. Recent work on depth estimation up to now has only focused
on projective images ignoring 360o content which is now increasingly and
more easily produced. We show that monocular depth estimation mod-
els trained on traditional images produce sub-optimal results on om-
nidirectional images, showcasing the need for training directly on 360o

datasets, which however, are hard to acquire. In this work, we circumvent
the challenges associated with acquiring high quality 360o datasets with
ground truth depth annotations, by re-using recently released large scale
3D datasets and re-purposing them to 360o via rendering. This dataset,
which is considerably larger than similar projective datasets, is publicly
offered to the community to enable future research in this direction. We
use this dataset to learn in an end-to-end fashion the task of depth esti-
mation from 360o images. We show promising results in our synthesized
data as well as in unseen realistic images.

Keywords: Omnidirectional Media, 360o, Spherical Panorama, Scene
Understanding, Depth Estimation, Synthetic Dataset, Learning with Vir-
tual Data

1 Introduction

One of the fundamental challenges in computer and 3D vision is the estimation
of a scene’s depth. Depth estimation leads to a three-dimensional understanding
of the world which is very important to numerous applications. These vary from
creating 3D maps [1] and allowing navigation in real-world environments [2], to
enabling stereoscopic rendering [3], synthesizing novel views out of pre-captured
content [4] and even compositing 3D objects into it [5]. Depth information has
been shown to boost the effectiveness of many vision tasks related to scene
understanding when utilized jointly with color information [6,7].

Similar to how babies start to perceive depth from two viewpoints and then
by ego-motion and observation of objects’ motions, researchers have tackled
the problem of estimating depth via methods built on multi-view consistency
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(a) (b) (c) (d) (e)

Fig. 1: We learn the task of predicting depth directly from omnidirectional indoor
scene images. Results from our RectNet model are presented (left to right): (a)
360o image samples from our test set, (b) corresponding ground truth depth, (c)
predicted depth maps of the test image samples, (d) 360o unseen image samples
from the Sun360 dataset, (e) predicted depth maps of the Sun360 image samples.

[8,9] and structure-from-motion (SfM)[10]. But humans are also driven by past
experiences and contextual similarities and apply this collective knowledge when
presented with new scenes. Likewise, with the advent of more effective machine
learning techniques, recent research focuses on learning to predict depth and has
led to impressive results even with completely unsupervised learning approaches.

However, learning based approaches have only focused on traditional 2D
content captured by typical pinhole projection model based cameras. With the
emergence of efficient spherical cameras and rigs, omnidirectional (360o) con-
tent is now more easily and consistently produced and is witnessing increased
adoption in entertainment and marketing productions, robotics and vehicular
applications as well as coverage of events and even journalism. Consumers can
now experience 360o content in mobile phones, desktops and, more importantly,
the new arising medium – Virtual Reality (VR) – headsets.

Depth and/or geometry extraction from omnidirectional content has been ap-
proached similar to traditional 2D content via omnidirectional stereo [11,12,13,14]
and SfM[4] analytical solutions. There are inherent problems though to applying
learning based methods to 360o content as a result of its acquisition process that
inhibits the creation of high quality datasets. Coupling them with 360o LIDARs
would produce low resolution depths and would also insert the depth sensor into
the content itself, a drawback that also exists when aiming to acquire stereo
datasets. One alternative would be to manually re-position the camera but that
would be tedious and error prone as a consistent baseline would not be possible.

In this work, we train a CNN to learn to estimate a scene’s depth given
an omnidirectional (equirectangular) image as input1. To circumvent the lack
of available training data we resort to re-using existing 3D datasets and re-

1 We use the terms omnidirectional image, 360o image, spherical panorama and
equirectangular image interchangeably in this document.
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purposing them for use within a 360o context. This is accomplished by generating
diverse 360o views via rendering. We use this dataset for learning to infer depth
from omnidirectional content. In summary, our contributions are the following:

1. We present the first, to the authors’ knowledge, learning based dense depth
estimation method that was trained with and operates directly on omnidi-
rectional content in the form of equirectangular images.

2. We offer a dataset consisting of 360o color images paired with ground truth
360o depth maps in equirectangular format. The dataset is available online2.

3. We propose and validate, a CNN auto-encoder architecture specifically de-
signed for estimating depth directly on equirectangular images.

4. We show how monocular depth estimation methods trained on traditional 2D
images fall short or produce low quality results when applied to equirectan-
gular inputs, highlighting the need for learning directly on the 360o domain.

2 Related Work

Since this work aims to learn the task of omnidirectional dense depth estimation,
and given that - to the authors’ knowledge - no other similar work exists, we first
review non-learning based methods for geometric scene understanding based on
360o images. We then examine learning based approaches for spherical content
and, finally, present recent monocular dense depth estimation methods.

2.1 Geometric understanding on 360o images

Similar to pinhole projection model cameras, the same multi-view geometry [8]
principles apply to 360o images. By observing the scene from multiple view-
points and establishing correspondences between them, the underlying geomet-
rical structure can be estimated. For 360o cameras the conventional binocular or
multi-view stereo [9] problem is reformulated to binocular or multi-view spherical
stereo [11] respectively, by taking into account the different projection model and
after defining the disparity as angular displacements. By estimating the disparity
(i.e. depth), complete scenes can be 3D reconstructed from multiple [15,14] or
even just two [12,13] spherical viewpoints. However, all these approaches require
multiple 360o images to estimate the scene’s geometry. Recently it was shown
that 360o videos acquired with a moving camera can be used to 3D reconstruct
a scene’s geometry via SfM [4] and enable 6 DOF viewing in VR headsets.

There are also approaches that require only a single image to understand in-
doors scenes and estimate their layout. PanoContext [16], generates a 3D room
layout hypothesis given an indoor 360o image in equirectangular format. With
the estimations being bounding boxes, the inferred geometry is only a coarse ap-
proximation of the scene. Similar in spirit, the work of Yang et al. [17] generates
complete room layouts from panoramic indoor images by combining superpixel
information, vanishing points estimation and a geometric context prior under a

2 http://vcl.iti.gr/360-dataset/

http://vcl.iti.gr/360-dataset/
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Manhattan world assumption. However, focusing on room layout estimation, it
is unable to recover finer details and structures of the scene. Another similar
approach [18] addresses the problem of geometric scene understanding from an-
other perspective. Under a maximum a posteriori estimation it unifies semantic,
pose and location cues to generate CAD models of the observed scenes. Finally,
in [19] a spherical stereo pair is used to estimate both the room layout but
also object and material attributes. After retrieving the scene’s depth by stereo
matching and subsequently calculating the normals, the equirectangular image
is projected to the faces of a cube that are then fed to a CNN whose object
predictions are fused into the 360o image to finally reconstruct the 3D layout.

2.2 Learning for 360o images

One of the first approaches to estimate distances purely from omnidirectional
input [20] under a machine learning setting utilized Gaussian processes. Instead
of estimating the distance of each pixel, a range value per image column was pre-
dicted to drive robotic navigation. Nowadays, with the establishment of CNNs,
there are two straightforward ways to apply current CNN processing pipelines to
spherical input. Either directly on a projected (typically equirectangular) image,
or by projecting the spherical content to the faces of a cube (cubemap) and run-
ning the CNN predictions on them, which are then merged by back-projecting
them to the spherical domain. The latter approach was selected by an artis-
tic style transfer work [21], where each face was re-styled separately and then
the cubemap was re-mapped back to the equirectangular domain. Likewise, in
SalNet360 [22], saliency predictions on the cube’s faces are refined using their
spherical coordinates and then merged back to 360o. The former approach, ap-
plying a CNN directly to the equirectangular image, was opted for in [23] to
increase the dynamic range of outdoor panoramas.

More recently, new techniques for applying CNNs to omnidirectional input
were presented. Given the difficulty to model the projection’s distortion directly
in typical CNNs as well as achieve invariance to the viewpoint’s rotation, the
alternative pursued by [24] is based on graph-based deep learning. Specifically
they model distortion directly into the graph’s structure and apply it to a classi-
fication task. A novel approach taken in [25] is to learn appropriate convolution
weights for equirectangular projected spherical images by transferring them from
an existing network trained on traditional 2D images. This conversion from the
2D to the 360o domain is accomplished by enforcing consistency between the
predictions of the 2D projected views and those in the 360o image. Moreover,
recent work on convolutions [26,27] that in addition to learning their weights
also learn their shape, are very well suited for learning the distortion model of
spherical images, even though they have only been applied to fisheye lenses up
to now [28]. Finally, very recently, Spherical CNNs were proposed in [29,30] that
are based in a rotation-equivariant definition of spherical cross-correlation. How-
ever these were only demonstrated in classification and single variable regression
problems. In addition, they are also applied in the spectral domain while we
formulate our network design for the spatial image domain.
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2.3 Monocular depth estimation

Depth estimation from monocular input has attracted lots of interest lately.
While there are some impressive non learning based approaches [31,32,33], they
come with their limitations, namely reliance on optical flow and relevance of the
training dataset. Still, most recent research has focused on machine learning to
address the ill-posed depth estimation problem. Initially, the work of Eigen et
al. [34] trained a CNN in a coarse-to-fine scheme using direct depth supervision
from RGB-D images. In a subsequent continuation of their work [6], they trained
a multi-task network that among predicting semantic labels and normals, also
estimated a scene’s depth. Their results showed that jointly learning the tasks
achieved higher performance due to their complementarity. In a recent similar
work [35], a multi-task network that among other modalities also estimated
depth, was trained using synthetic data and a domain adaptation loss based on
adversarial learning, to increase its robustness when running on real scenes. Laina
et al. [36] designed a directly supervised fully convolutional residual network
(FCRN) with novel up-projection blocks that achieved impressive results for
indoor scenes and was also used in a SLAM pipeline [1].

Another body of work focused on applying Conditional Random Fields (CRFs)
to the depth estimation problem. Initially, the output of a deep network was re-
fined using a hierarchical CRF [37], with Liu et al. [38] further exploring the
interplay between CNNs and CRFs for depth estimation in their work. Recently,
multi-scale CRFs were used and trained in an end-to-end manner along with the
CNN [39]. Dense depth estimation has also been addressed as a classification
problem. Since perfect regression is usually impossible, dense probabilities were
estimated in [40] and then optimized to estimate the final depth map. Similarly,
in [41] and [42] depth values were discretized in bins and densely classified, to
be afterwards refined either via a hierarchical fusion scheme or through the use
of a CRF respectively. Taking a step further, a regression-classification cascaded
network was proposed in [43] where a low spatial resolution depth map was
regressed and then refined by a classification branch.

The concurrent works of Garg et al. [44] and Godard et al. [45] showed that
unsupervised learning of the depth estimation task is possible. This is accom-
plished by an intermediate task, view synthesis, and allowed training by only
using stereo pair input with known baselines. In a similar fashion, using view
synthesis as the main supervisory signal, learning to estimate depth was also
achieved by training with pure video sequences in a completely unsupervised
manner [46,47,48,49,50]. Another novel unsupervised depth estimation method
relies on aperture supervision [51] by simply acquiring training data in various
focus levels. Finally, in [52] it was shown that a CNN can be trained to estimate
depth from monocular input with only relative depth annotations.

3 Synthesizing Data

End-to-end training of deep networks requires a large amount of annotated
ground truth data. While for typical pinhole camera datasets this was partly
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addressed by using depth sensors [53] or laser scanners [54] such an approach is
impractical for spherical images due to a larger diversity in resolution for 360o

cameras and laser scanners, and because each 360o sensor would be visible from
the other one. As much as approaches like the one employed in [55] could be used
to in-paint the sensor regions, these would still be the result of an algorithmic
process and not the acquisition process itself, potentially introducing errors and
artifacts that would reduce the quality of the data. This also applies to unsuper-
vised stereo approaches that require the simultaneous capture of the scene from
two viewpoints. Although one could re-position the same sensor to acquire clean
panoramas, a consistent baseline would not be possible. More recently, unsu-
pervised approaches for inferring a scene’s depth have emerged that are trained
with video sequences. However, they assume a moving camera as they rely on
view synthesis as the supervisory signal which is not a typical setting for indoors
360o captures, but for action camera like recordings.

360D Dataset: Instead, we rely on generating a dataset with ground truth
depth by synthesizing both the color and the depth image via rendering. To
accomplish that we leverage the latest efforts in creating publicly available tex-
tured 3D datasets of indoors scenes. Specifically, we use two computer generated
(CG) datasets, SunCG [56] and SceneNet [57], and two realistic ones acquired by
scanning indoor buildings, Stanford2D3D [58,59] and Matterport3D [60]. We use
a path tracing renderer3 to render our dataset by placing a spherical camera and
a uniform point light at the same position c ∈ R3 in the scene. We then acquire
the rendered image I(p) ∈ R,p = (u, v) ∈ N2, as well as the underlying z-buffer
that was generated as a result of the graphics rendering process, that serves as
the ground truth depth D(p) ∈ R. It should be noted that unlike pinhole camera
model images, the z-buffer in this case does not contain the z coordinate value
of the 3D point v(p) ∈ R3, corresponding to pixel p, but instead the 3D point’s
radius r = ‖v − c‖, in the camera’s spherical coordinate system.

For the two CG indoors datasets we place the camera and the light at the
center of each house, while for the two scanned indoors datasets we use the
pose information available (estimated during the scanning process) and thus,
for each building we generate multiple 360o data samples. Given that the latter
two datasets were scanned, their geometries contain holes or inaccurate/coarse
estimations, and also have lighting information baked into the models. On the
other hand, the CG datasets contain perfect per pixel depth but lack the realism
of the scanned datasets, creating a complementary mix. However, as no scanning
poses are available, the centered poses may sometimes be placed within or on
top of objects and we also observed missing information in some scenes (e.g.
walls/ceilings) that, given SunCG’s size, are impractical to manually correct.

For each pose, we augment the dataset by rotating the camera in 90o resulting
in 4 distinct viewpoints per pose sample. Given the size of SunCG, we only utilize
a subset of it and end up using 11118 houses, resulting in a 24.36% utilization.
The remaining three datasets are completely rendered. This results in a total
of 94098 renders and 23524 unique viewpoints. Our generated 360D dataset

3 https://www.cycles-renderer.org

https://www.cycles-renderer.org
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Fig. 2: Example renders from our dataset, from left to right: the 3D building
with a green highlight denoting the rendered scene, color output, corresponding
depth map, and the binary mask depicting the missing regions in black.

contains a mix of synthetic and realistic 360o color I and depth D image data in
a variety of indoors contexts (houses, offices, educational spaces, different room
layouts) and is publicly available at http://vcl.iti.gr/360-dataset/.

4 Omnidirectional Depth Estimation

The majority of recent CNN architectures for dense estimation follow the au-
toencoder structure, in which an encoder encodes the input, by progressively
decreasing its spatial dimensions, to a representation of much smaller size, and
a decoder that regresses to the desired output by upscaling this representation.

We use two encoder-decoder network architectures that are structured differ-
ently. The first resembles those found in similar works in the literature [45,36],
while the second is designed from scratch to be more suitable for learning with
360o images. Both networks are fully convolutional [61] and predict an equirect-
angular depth map with the only input being a 360o color image in equirectan-
gular format. We use ELUs [62] as the activation function which also remove the
need for batch normalization [63] and its added computational complexity.

UResNet: In this unbalanced ResNet, the encoding and decoding parts are
not symmetrical, with the decoder being shallower. The encoder is built with
skip connections [64], a technique that helps when training deeper architectures
by preventing gradient degradation, allowing for larger receptive fields. More
detailed architectural information is presented in Fig. 3 where the network is
decomposed into processing blocks.

RectNet: Omnidirectional images differ from traditional images in the sense
that they capture global (full 360o) visual information and, when in equirect-
angular format, suffer from high distortions along their y (i.e. latitude) axis.

http://vcl.iti.gr/360-dataset/
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Fig. 3: UResNet Architecture: The encoder consists of two input preprocess-
ing blocks, and four down-scaling blocks (dark green). The former are single
convolutional (conv) layers while the latter consist of a strided conv and two
more regular convs with a skip/residual connection. The decoder contains one
upscaling block (orange) and three up-prediction blocks (red), followed by the
prediction layer (pink). Up-scaling is achieved with a strided deconv followed by
a conv, and similarly, up-predictions additionally branch out to estimate a depth
prediction at the corresponding scale with an exta conv that is concatenated with
the features of the next block’s last layer.

Therefore, the second architecture’s design aims to exploit and address these
properties of spherical panoramas while keeping some of the desirable properties
of UResNet like skip connections. Capturing the 360o image’s global context is
achieved by increasing the effective receptive field (RF) of each neuron by uti-
lizing dilated convolutions [65]. Instead of progressive downscaling as in most
depth estimation networks and similarly UResNet, we only drop the spatial di-
mensions by a factor of 4. Then, inspired by [66], we use progressively increasing
dilations to increase the RF to about half the input’s spatial dimensions and
increase global scene understanding. In addition, within each dilation block we
utilize 1× 1 convolutions to reduce the spatial correlations of the feature maps.

The distortion factor of spherical panoramas increases towards the sphere’s
poles and is therefore different for every image row. This means that information
is scattered horizontally, as we vertically approach the two poles. In order to
account for this varying distortion we alter our input blocks, as their features
are closer to natural image ones (e.g. edges). Following [25], where 2D CNN
filters are transfered into distorted (practically rectangular) row-wise versions to
increase performance when applied to the 360o domain, we use rectangle filters
along with traditional square filters and vary the resolution of the rectangle ones
to account for different distortion levels. However, this variation is done while
also preserving the area of the filter to be as close as possible to the original
square filter’s. The outputs of the rectangle and square filters are concatenated
while preserving the overall output feature count. The detailed architecture is
presented in Fig. 4.

Training Loss: Given that we synthesize perfect ground truth depth anno-
tations Dgt, as presented in Section 3, we take a completely supervised approach.



OmniDepth 9

Fig. 4: RectNet Architecture: The encoder consists of two preprocessing
blocks (yellow and blue) and a downscaling block (dark green), followed by
two increasing dilation blocks (light green and black). The preprocessing blocks
concatenate features produced by convolutions (convs) with different filter sizes,
accounting for the equirectangular projection’s varying distortion factor. The
down-scaling block comprises a strided and two regular convs.

Even though most approaches using synthetic data fail to generalize to realistic
input, our dataset contains an interesting mix of synthetic (CAD) renders as well
as realistic ones. The scanned data are acquired from real environments and, as
a result, their renders are very realistic. Following previous work, we predict
depth Ds

pred against downscaled versions of the ground truth data Ds
gt at multi-

ple scales (with s being the downscaling factor) and upsample these predictions
using nearest neighbor interpolation to later concatenate them with the subse-
quent higher spatial dimension feature maps. We also use the dropout technique
[67] in those layers used to produce each prediction. Further, we use L2 loss
for regressing the dense depth output Edepth(p) = ‖Dgt(p) − Dpred(p)‖2 and
additionally add a smoothness term Esmooth(p) = ‖∇D(p)‖2 for the predicted
depth map by minimizing its gradient.

Although our rendered depth maps are accurate in terms of depth, in practice
there are missing regions in the rendered output. These are either because of
missing information in the CAD models (e.g. walls/ceilings) or the imperfect
process of large scale 3D scanning, with visual examples illustrated in Fig. 2.
These missing regions/holes manifest as a specific color (”clear color”), selected
during rendering, in the rendered image and as infinity (”far”) values in the
rendered depth map. As these outlier values will destabilize the training process,
we ignore them during backpropagation by using a per pixel p binary mask M(p)
that is zero in these missing regions. This allows us to train the network even
with incomplete or slightly inaccurate/erroneous 3D models. Thus, our final loss
function is:

Eloss(p) =
∑
s

αsM(p)Edepth(p) +
∑
s

βsM(p)Esmooth(p) , (1)

where αs, βs are the weights for each scale of the depth and smoothing term.
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Table 1: Quantitative results of our networks for 360o dense depth estimation.
Network Tested on Abs Rel ↓ Sq Rel ↓ RMS ↓ RMSlog ↓ δ < 1.25 ↑ δ < 1.22 ↑ δ < 1.253 ↑
UResNet Test set 0.0835 0.0416 0.3374 0.1204 0.9319 0.9889 0.9968
RectNet Test set 0.0702 0.0297 0.2911 0.1017 0.9574 0.9933 0.9979
UResNet SceneNet 0.1218 0.0727 0.4066 0.1538 0.8598 0.9815 0.9962
RectNet SceneNet 0.1077 0.699 0.3572 0.1386 0.8965 0.9879 0.9971

UResNet -S2R Stanford 0.1226 0.0768 0.489 0.1667 0.8593 0.9756 0.9942
RectNet -S2R Stanford 0.0824 0.0457 0.3998 0.1229 0.928 0.9879 0.9971
UResNet -S2R SceneNet 0.1448 0.0991 0.517 0.1792 0.7898 0.9761 0.9935
RectNet -S2R SceneNet 0.1079 0.0644 0.3778 0.1404 0.8966 0.9866 0.996

5 Results

We evaluate the performance of our two 360o depth estimation networks by
first conducting an intra assessment of the two models and then offering quan-
titative comparisons with other depth estimation methods. Finally, we present
comparative qualitative results in unseen, realistic data of everyday scenes.

Training Details: Our networks are trained using Caffe [68] on a single
NVIDIA Titan X. We use Xavier weight initialization [69] and ADAM [70] as
the optimizer with its default parameters [β1, β2, ε] = [0.9, 0.999, 10−8] and an
initial learning rate of 0.0002. Our input dimensions are 512× 256 and are given
in equirectangular format, with our depth predictions being equal sized.

We split our dataset into corresponding train and tests sets as follows: (i)
Initially we remove 1 complete area from Stanford2D3D, 3 complete buildings
from Matterport3D and 3 CAD scenes from SunCG for our test set totaling 1,298
samples. (ii) We skip SceneNet entirely and use it as our validation set. (iii)
Then, from the remaining SunCG, Stanford2D3D and Matterport3D samples
we automatically remove scenes which contain regions with very large or small
depth values (> 5% of total image area above 20m or under 0.5m). Finally, we
are left with a train-set that consists of 34,6794 RGB 360o images along with
their corresponding ground truth depth map annotations. Our loss weights for
UResNet are [α1, α2, α4, β1] = [0.445, 0.275, 0.13, 0.15], and for RectNet they are
[α1, α2, β1, β2] = [0.535, 0.272, 0.134, 0.068]. For quantitative evaluation we use
the same error metrics as previous works [34,6,45,36,38] (arrows next to each
metric in the tables denote the direction of better performance).

Model Performance: Table 1 presents the results of our two models in
our test set, and in the unseen synthetic SceneNet generated data, after training
for 10 epochs in all of our train set. We observe that RectNet – which was
designed with 360o input in mind – performs better than the standard UResNet
even with far fewer parameters (∼ 8.8M vs ∼ 51.2M). In order to assess their
efficacy and generalization capabilities we perform a leave-one-out evaluation.
We train both networks initially only in the synthetic SunCG generated data
for 10 epochs, and then finetune them in the realistic Matterport3D generated

4 Only a subset of SunCG was used by prioritizing larger scenes given the length of
the rendering process. However, a larger subset is publicly available.
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Table 2: Quantitative results against other monocular depth estimation models.
Network Abs Rel↓ Sq Rel ↓ RMS ↓ RMS(log) ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
UResNet 0.0835 0.0416 0.3374 0.1204 0.9319 0.9889 0.9968
RectNet 0.0702 0.0297 0.2911 0.1017 0.9574 0.9933 0.9979

Godard et al. [45] 0.4747 2.3783 7.2097 0.82 0.297 0.79 0.751
Laina et al. [36] 0.3181 0.4469 0.941 0.376 0.4922 0.7792 0.915

E
q
u
ir
e
c
t
.

Liu et al. [38] 0.4202 0.7597 1.1596 0.44 0.3889 0.7044 0.8774

Godard et al. [45] 0.2552 0.9864 4.4524 0.5087 0.3096 0.5506 0.7202
Laina et al. [36] 0.1423 0.2544 0.7751 02497 0.5198 0.8032 0.9175

C
u
b
e
m

a
p

Liu et al. [38] 0.1869 0.4076 0.9243 0.2961 0.424 0.7148 0.8705

data for another 10 epochs. This train is suffixed with ”-S2R”. We then evaluate
them in the entirety of the Stanford2D3D generated dataset, as well as in the
SceneNet one. Comparable results to the previous train with all datasets are
observed. Again, RectNet outperforms UResNet – albeit both perform slightly
worse as expected due to being trained with less amount of data.

The increased performance of RectNet against UResNet in every error metric
or accuracy, can be attributed to its larger RF, which for 360o images is very
important as it allows the network to capture the global context more efficiently5.
Despite the fact that UResNet is much deeper than RectNet and significantly
drops the input’s spatial dimensions, RectNet still achieves a larger receptive
field. Specifically, UResNet has a 190 × 190 RF compared to that of RectNet
which is 266 × 276. In addition, RectNet drops the input’s spatial dimensions
only by a factor of 4, maintaining denser information in the extracted features.

Comparison against other methods: Given that there are no other meth-
ods to perform dense depth estimation for 360o images, we assess its performance
against the state of the art in monocular depth estimation models. Since the pre-
dictions of these methods are defined in different scales, we scale the estimated
depth maps by a scalar s̃, which matches their median with our ground truth like
[46], i.e. s̃ = median(Dgt)/median(Dpred). Moreover, we evaluate the masked
depth maps as mentioned in Section 3 in order to ignore the missing values.
Table 2 presents the results of of state-of-the-art methods when applied directly
on our test split in the equirectangular domain. We offer results for the model of
Laina et al. [36], trained with direct depth supervision in indoor scenes, Godard
et al. [45], trained in an unsupervised manner in outdoor driving scenes using
calibrated stereo pairs, and the method of Liu et al. [38], which combines learn-
ing with CRFs and is trained in indoor scenes. As observed by the results, the
performance of all the methods directly on equirectangular images is poor, and
our main models outperform them. However, inferior performance is expected as
these were not trained directly in the equirectangular domain but in perspective
images. Nonetheless, Laina et al. [36] and Liu et al. [38] achieve much better
results than Godard et al. [45]. This is also expected as the latter is trained in
an outdoor setting, with very different statistics than our indoor dataset.

5 Varying RF experiments supporting this claim can be found in the supplement.
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Fig. 5: Qualitative results on our test split.

”Indoors” split ”Room” split
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Fig. 6: Qualitative results on the ”Room” and ”Indoors” Sun360 splits.

For a more fair comparison we use a cubemap projection (Fig. 7 (left)) of all
spherical images and then run each model on the projected cube faces which are
typical perspective images. After acquiring the predictions, we merge all cube
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Table 3: Per cube face quantitative results against other monocular models.
Network AbsRel ↓ SqRel ↓ RMSE ↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δN1.253 ↑
UResNet 0.0097 0.0062 0.1289 0.041 0.9245 0.9853 0.9955
RectNet 0.008 0.0042 0.1113 0.03504 0.9497 0.9907 0.9969

Godard et al. [45] 0.0453 0.1743 1.6559 0.1958 0.4524 0.7023 0.8315
Laina et al. [36] 0.03 0.0549 0.3152 0.1033 0.6353 0.8616 0.9412
Liu et al. [38] 0.0312 0.0532 0.3048 0.107 0.603 0.8412 0.9338

Fig. 7: Cubemap projection (left) and merged monocular predictions (right).

faces’ depth maps by projecting them back to the equirectangular domain to
be evaluated. However, since the top and bottom cube face projections will be
mostly planar, we ignore them during evaluation of all metrics. While monocular
performance is improved compared to when applied directly to equirectangular
images, their quantitative performance is still inferior to our models. Further,
the runtime performance is also worse as multiple inferences need to run, one
for each face, incurring a much higher computational cost. Moreover, another
apparent issue is the lack of consistency between the predictions of each face.
This is shown in Fig. 7 (right) where it is clear that the depth scales of each
face are different. This is in line with the observations in [21], but is more pro-
nounced in the depth estimation case, than the style transfer one. Based on
this observation, we evaluate each cube face separately against the ground truth
values of that face alone which is also median scaled separately. The average
values of the front, back, right and left faces for each monocular model against
the obtained by our models on the same faces alone are presented in Table 3.
Although the performance of the monocular models is further improved, our
models still perform better. This can be attributed to various reasons besides
training directly on equirectangular domain. One explanation is that 360o im-
ages capture global information which can better help reasoning about relative
depth and overall increase inference performance. The other is that our gener-
ated dataset is considerably larger and more diverse than other indoor datasets.
In addition, the cube faces are projected out of 512× 256 images and are thus,
of lower quality/resolution than typical images these models were trained in.

Qualitative Results: To determine how well our models generalize, we ex-
amine their performance on completely unseen data found in the Sun360 dataset
[71], where no ground truth depth is available. The Sun360 dataset comprises
realistic environment captures and has also been used in the work of Yang et al.
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[17] for room layout estimation. We offer some qualitative results on a data split
from [17], referred to as ”Room”, as well as an additional split of indoor scenes
that we select from the Sun360 dataset, referred to as ”Indoors”. These are
presented in Fig. 6 for our two models as well as the monocular ones that were
quantitatively evaluated. Our models are able to estimate the scenes’ depth with
the only monocular model to produce plausible results being the one of Laina
et al. [36]. We also observe that UResNet offers smoother predictions than the
better performing RectNet, unlike the results obtained on our test split. More
qualitative results can be found in the supplementary material where comparison
with the method of Yang et al. [17] is also offered.

6 Conclusions

We have presented a learning framework to estimate a scene’s depth from a
single 360o image. Our models were trained in a completely supervised manner
with ground truth depth. To accomplish this, we overcame the dataset unavail-
ability and difficulty in acquisition for paired 360o color and depth image pairs.
This was achieved by re-using 3D datasets with both synthetic and real-world
scanned indoors scenes and synthesizing a 360o dataset via rendering. 360o depth
information can be useful for a variety of tasks, like in adding automation in the
composition of 3D elements within spherical content [72].

Since our approach is the first work for dense 360o depth estimation, there
are many challenges that still need to be overcome. Our datasets only cover
indoor cases, limiting the networks’ applicability to outdoor settings, and are
generated with perfect camera vertical alignment with constant lighting and
no stitching artifacts. This issue is further accentuated as the scanned datasets
had lighting information baked into them during scanning. This can potentially
hamper robustness when applied in real world conditions that also contain a
much higher dynamic range of luminosity.

For future work, we want to explore unsupervised learning approaches that
are based on view synthesis as the supervisory signal. Furthermore, robustness
to real world scenes can be achieved, either by utilizing GANs as generators of
realistic content, or by using a discriminator to identify plausible/real images.
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