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Abstract—Geometry and texture resolution are two common
system parameters of any modern volumetric 3D reconstruc-
tion pipeline. In tele-immersive applications, besides their
apparent impact on the visual quality of the output 3D mesh,
their absolute values implicitly influence the computational
load of the whole tele-immersion pipeline from acquisition
to 3D reconstruction, compression and transmission. Thus,
tuning those parameters to an optimal combination has evident
benefits. In this paper, we conduct a subjective experiment to
assess the visual quality of textured human 3D-reconstructed
meshes that are produced by a volumetric 3D reconstruction
algorithm as a joint function of the geometry and texture
resolution production parameters. The experiment is based on
the forced choice pairwise comparison methodology on pre-
rendered views of the real-time reconstructed meshes within
the context of human performance capture. We analyze the
pairwise comparison data and establish a ranking of the
parameter space and, thus also, a mapping from the pa-
rameters to the subjective visual quality. The results of this
study may be utilized to tune the parameters of the real-time
3D reconstruction pipeline, optimizing for the best balance
between visual quality, bandwidth and overall performance.

1. Introduction

In all contemporary volumetric 3D reconstruction al-
gorithms, like [1], [2], [3] and [4], the volume of the
target scene is initially descritized into small cubical vol-
ume elements called voxels [5]. The size of those voxels
constitutes a parameter of the system and is often refered
to as geometry resolution. It is apparent, that the visual
quality of the 3D reconstruction’s output is tightly coupled to
the value of this parameter. Furthermore, during rendering,
the 3D reconstructed meshes are eventually textured using
the color images that were captured by the cameras during
the acquisition phase of the reconstruction pipeline. The
spatial resolution of the color images that are used to texture
the reconstructed 3D mesh is a second parameter of the
system that also affects the visual fidelity of the output
meshes. In most real-time 3D reconstruction systems, higher
geometry resolution implies better visual quality at the cost
of additional computational burden. Moreover, oftentimes,
the image resolution of the captured images also affect the
acquisition frame-rate. Commodity RGB-D sensors usually

operate at higher frame-rates at lower resolution. Moreover,
in the case of real-time transmission of the 3D reconstructed
meshes (e.g in a live tele-immersion scenario) the increased
volume of data corresponding to geometry and textures
inhibit an additional computational cost to compress and
actually send the data to the remote parties. Thus, the
benefits of optimizing the geometry and texture resolution
parameters of the 3D reconstruction pipeline with respect
to a fair balance between visual quality and performance is
evident.

In this work, we propose one of the first attempts to sub-
jectively evaluate the visual quality of textured human full-
body 3D reconstructions produced by a volumetric method
[4]. We jointly evaluate the geometry and texture reso-
lution parameters of the 3D reconstruction algorithm and
we compute a model that maps resolution parameters to a
visual quality score based on statistical results of subjective
pairwise comparisons of images depicting rendered views
of the 3D reconstructed human meshes. The results of this
study may be utilized to tune the parameters of the real-time
3D reconstruction pipeline, optimizing for the best balance
between visual quality, frame-rate and bandwidth.

2. Related Work

The main contribution of the present work is relating
the subjective visual quality of reconstructed human 3D
meshes to their production parameters: geometry and texture
resolution. This is a pioneering direction emerging from the
technological advances in digitizing real world content to
3D representations via depth sensing and 3D reconstruction
algorithms. This is opposed to traditional 3D mesh creation
in 3D modeling tools from specialist artists. To the best
of our knowledge there is no other work performing this
exact same task. However, in the previous years, significant
efforts were made to invent objective metrics that correlate
well with human opinion on the visual quality of 3D meshes
in general. Those metrics can be separated in two major
categories: those that operate on the 3D geometry and
those that operate on viewpoint-based rendering of the 3D
geometry. Further, there are a few proposed metrics that
assess 3D geometry jointly with texture. Besides evaluating
the visual quality of meshes directly in 3D space, it is also
relevant to consider related work in the area of 2D image
quality assessment, since the 3D models are mostly often



presented to the viewers as a rendered 2D image shown on
a flat screen. Finally we consider related work of the most
common existing surveying methodologies on subjective
evaluation of traditional 2D images and videos.
Subjective visual quality evaluation of 3D meshes.
One of the first works on visual quality assessment of 3D
meshes taking into account geometry and texture resolution
and proposing an objective metric which fits geometry and
texture resolution parameters to the collected subjective data
is [6]. However, in this work the low geometry resolutions
of the 3D meshes are decimated versions of a higher quality
reference mesh. In the contrary, in the present work we
evaluate geometry resolution as a production parameter, i.e:
the output of the 3D reconstruction algorithm operating at
a higher / lower voxel size and eventually evaluating the
reconstruction algorithm’s performance and not the perfor-
mance of a decimation algorithm.

Later, in [7], a performance comparison between
viewpoint-independent and viewpoint dependent metrics and
their correlation with human judgments is presented. The
paper concludes that visual quality evaluation can be per-
formed either with image based or geometry based metrics.
While there are arguments for both, there is not a clear group
of metrics that is superior to the other. Moreover, it is found
that that visual quality assessment is also depending on the
semantic interpretation of the content.

Recently, apart from [6] which directly mapped deci-
mation and texture downscale parameters to visual quality,
other objective metrics have been introduced in the literature
which operate in full, reduced or no reference setting [8].
In [9], a full reference objective metric for evaluating the
visual quality of colored 3D point cloud is proposed. For
3D meshes, Dong et al. [10] introduced an objective full-
reference metric based on curvature. However, their metric
operates only between reference and impaired meshes with
the same number of vertices which is not the typical case in
varying geometry resolutions of 3D reconstructed meshes.
On the other hand, a reduced and no-reference metrics for
the same purpose were introduced by Abouelaziz et al. in
[11] and [12].

Finally, the most recent work we know in this area is the
one presented in [13] which apart from [6] is the only work
considering joint distortions in both geometry and texture.
In that work the formulated considered dataset includes five
types of distortions: geometry quantization (often found in
compression algorithms), geometry simplification, geometry
smoothing, texture compression and texture downscaling.
In the same work, Guo et al. propose two full-reference
metrics for textured mesh visual quality prediction. While
still relevant, the work of [13] has a different scope than
the current paper. The present work computes a model that
relates the 3D reconstructed mesh production parameters to
subjective visual quality. Thus, the input to our proposed
model are geometry and texture resolution. On the other
hand, the model of [13] requires a reference and impaired
mesh to judge about the subjective quality.
Subjective visual quality evaluation of 2D images. Similar
to the previous case for 3D meshes, for 2D images, the

proposed metrics that evaluate the objective quality of a 2D
image can be either in a full-reference, reduced-reference or
no-reference setting. Typical full-reference objective metrics
include PSNR, SSIM, multiscale SSIM (MS-SSIM), VIF,
MAD and FSIM [14]. From those metrics, as evaluated
in [14], VIF and MAD correlate better to subjective mea-
surements in the root mean squared error (RMSE) sense.
However, an improvement of the full-reference SSIM metric
has been recently proposed in [15].

In [16], Xue et al. proposed a reduced reference image
quality assessment metric based on Weibull statistics, while
more recently, in [17] another reduced reference image qual-
ity metric was presented based on DCT Sub-band similarity.

In [18] a no reference image visual quality metric is
proposed based on fusion of statistical and human visual
system based metrics using ε-Support Vector Regression
while Freitas et al, in [19], proposed another no-reference
image assessment metric based on local ternary patterns.
Methodologies for visual quality assessment of images
and videos. The most commonly established methodolo-
gies for surveying subjects on image and video quality are
the ones standardized by the International Telecommunica-
tion Union (ITU). The reference documents include ITU-R
BT.500 [20] for images and ITU-T P.910 [21] for videos.
In [22] a comparison is conduced between single-stimulus,
double-stimulus, forced-choice pairwise comparison, and
similarity judgment methodologies, introduced in [21], [23]
and [24]. The analysis made in [22] concludes that the
results with the lowest variance were obtained by the forced
choice pairwise comparison methodology. In this type of
subjective assessment, namely pairwise comparisons, two
stimuli with the same content are being displayed to the
observers forcing them to chose the best stimulus even if
both stimuli possess no difference. To minimize the number
of pairwise comparisons and analyze the results obtained
by the subjects, Perez-Ortiz et al [25] introduced a practical
guide and a MATLAB toolbox to compute a model that
fits the subjective data. Finally, a more recent work which
optimizes the number of pairwise comparisons adaptively in
an online setting is introduced in [26].

In this paper, we chose to follow the subjective evalua-
tion methodology described in [25].

3. Experiment

In this work we conduct an experiment to assess the
visual quality of human 3D reconstructions produced by
the method of [4] with respect to its two production res-
olution parameters for geometry and texture. In this section
we describe all the steps we took in order to realize the
experiment, along with all the decisions we had to make
throughout the process.
Generating 3D Content. The first step to 3D content
generation is the acquisition process. We captured 4 different
humans in varying contexts with typical RGB-D sensors in a
360◦ multi-camera setup. Specifically, using 6 cameras, we
captured 5 distinct performances, namely kicking, punching,



Figure 1. Snapshots from the 5 performances that were captured to produce
the 3D sequences.

Figure 2. Positions of the participating (blue-connected by orange lines)
and non-participating viewpoints (red). On the left (diamond patterns) the
non-participating viewpoints are positioned higher than the participating
ones, while on the right (cross patterns) they are on the same height. In all
circumstances, they are positioned between two participating viewpoints.

conversing, dancing and physical exercising as presented
in Figure 1, with their durations ranging from 11 to 62
seconds. Four out of six cameras are placed symmetrically
around the center of the capturing area and their content
is used to generate the 3D reconstruction of the captured
human. The two remaining cameras are externally calibrated
with the original four ones and are later used to acquire
objective measurements in order to facilitate the selection
process of the 3D content that was finally presented to the
surveyed subjects. We refer to the first four viewpoints as
the 3D reconstruction participating viewpoints and the two
extra ones as the non-participating viewpoints. The non-
participating viewpoints additionally offer un-biased views
in the sense that we can examine the shortcomings of the 3D
reconstruction process by placing the viewpoints in positions
where most distortions would manifest at. The most com-
mon distortions would be occlusions that result in ”holes”,
i.e. untextured areas, and the lowest texturing quality as a
result of the viewpoint-based texture blending [4]. During
the capturing process the non-participating viewpoints are
positioned in between of participating ones, either on the
same height and looking inwards, or higher and looking
downwards towards the center of the capturing space, as
illustrated in Figure 2.

From each captured sequence we generate the 3D re-
constructed performance using the four participating view-
points. The 3D mesh production parametric space consid-
ered in the present work consists of three discrete levels

Figure 3. 3D reconstructions of the same frame in varying production
parameters. Geometry resolution increases from left to right. Texture res-
olution increases from bottom to top.

for geometry resolution (32, 64 and 128, with the y axis
resolution being the double of the reported number, i.e. the
x and z axis resolutions) and three discrete levels for tex-
ture resolution (1920× 1080 - original Full-HD resolution,
960 × 540 - downscaled by a factor of 2, and 480 × 270
- downscaled by a factor of 4). Therefore, we reconstruct
each sequence 9 times (using all combinations of geometry
and texture resolution) and generate a total of 45 3D recon-
structed performances in varying parameterizations with an
example presented in Figure 3. The lowest resolution levels
for geometry and texture were chosen as such because, for
most people, further reduction of those values result into
3D meshes of unacceptable subjective visual quality. On
the other hand, the upper value for texture resolution was
determined by the capabilities offered by the used RGB-
D sensor, while the upper value for geometry resolution
was based on the maximum computational load that our
hardware can handle in order for the algorithm to be real-
time.

Experimental Setup. The subjective evaluation method-
ology adopted in this paper was forced choice pairwise
comparisons (PC) [25], during which the participants are
asked to choose the preferred content between two choices.
Compared to other methods, PC is easier for the partici-
pants, especially for non experts, and simpler to implement.
Additionally, in the literature, this method was found to
also produce measurements of smaller variance compared
to other alternatives [22]. However the number of possible
comparisons can get quite large especially if more than one
parameters are modified. This problem can be mitigated
by always presenting content of similar quality. This can
significantly reduce the number of required comparisons. In
our case, and by following the guidelines proposed in [25],
we choose to compare 3D generated content for which the



one production parameter is constant and the second differs
only by one level. This reduces the number of comparisons
for every 3D content from 36 to 12. Moreover, this also sat-
isfies the requirement described in the above work to avoid
pairwise comparisons where one content is overwhelmingly
preferred over the other, as this case tends to give biased or
even wrong results.

Since the content is 3D, our typical presentation options
include unrestricted free view-point viewing, pre-defined
continuous changing viewpoint animations and static pre-
render views. Each presentation option has its own benefits
and shortcomings [7], [13] with no method dominating the
others in all relevant aspects. We chose to adopt static
pre-rendered views for simplicity, fairness for comparison
between different subjects (as they all see the same view)
and minimization of the survey’s duration while maximizing
variation in human performance types.

After producing the human 3D-meshes from pre-
recorded captures of human performances in all discrete
levels of the production parameters, we were required to
follow a strategy in order to select the actual content (static
frames) that would be showcased to the subjective survey.
Initially, the selection process was mainly driven by the total
expected duration of the survey for each subject. With a
target of 30 mins per subject and asserting that a pairwise
choice can be made in 5 seconds we can afford a total of
360 comparisons. Since we need 12 comparisons of different
quality levels for the same content (pre-rendered frame), the
total number of distinct frames that we can present to the
subjects are 30. Those 30 pre-rendered frames are equally
distributed among all the 5 distinct captured performances
resulting into 6 total frames per captured sequence.

For the same value of the geometry resolution parameter
it is expected that the 3D reconstructed mesh will be of
better visual quality when the captured user’s bounding
box is of smaller size. This is due to the nature of the
volumetric 3D reconstruction algorithm which operates on
the discretization of the captured space in constant number
of voxels. The higher the captured space (bounding box)
the higher the voxel size and thus the lower the fidelity of
the output 3D mesh. Depending on the type of the perfor-
mance executed by the captured users, it is common that
the bounding box of the captured user varies significantly
across time. In our survey we would like to include frames
corresponding to small, medium and large voxel sizes from
each captured sequence. In order to accomplish that, we
esteem that along a sequence of 3D meshes produced with
the same production parameters, the frames that correspond
to lower voxel size are the ones producing better scores with
respect to a reference ground-truth image when compared
using an objective image similarity metric. In our case we
were able to automatically extract frames whose bounding
box is low, medium or large by computing SSIM [27]
scores between the reference ground-truth non-participating
captured images of the reconstructed users and a rendered
image of the 3D reconstructed human from the same view-
point. We distributed the 6 total frames of each captured
sequence we computed in the previous paragraph among the

Age Gender Experienced
Min Max Average Male Female Yes No
25 43 30 26 4 10 20

TABLE 1. DEMOGRAPHICS OF SURVEYED SUBJECTS.

Figure 4. A screenshot of the forced pairwise comparison application used
for the survey. Users watch the content side by side and select their
preference by clicking on the respective (left or right) green tick mark.

2 non-participating view points and among 3 levels of SSIM
(low, mid, high implicitly corresponding to high, mid and
low voxel sizes). The additional advantage of employing
an image objective metric (SSIM) in our frame selection
strategy, is the increased trust we can have in our selection
process to not be biased towards only good or bad 3D
reconstructions. The objective metric gives an indication of
the quality of the 3D reconstruction with respect to the non-
participating viewpoint which is used as a reference.
Generating pre-rendered views. The final pre-rendered
views that were presented to the surveyed subjects were
produced by the following process. Using the extra sensor
viewpoints which are externally calibrated onto the same
coordinate system as the participating viewpoints, we render
each sequence’s frame after positioning the virtual camera
at the external viewpoint’s position and set the projection
matrix according to the sensor’s intrinsics. We set the ren-
dering output to be Full-HD. In this way, we acquire novel
views of the 3D reconstructed sequence (i.e. views that are
not aligned with the capturing setup which participated in
the 3D reconstruction) and we can additionally calculate
objective metrics for these rendered views against the sensor
acquired color data as described in the previous subsection.
It is maybe worth to note that the objective metric (SSIM) is
calculated by taking into account only the area of the image
that corresponds to the rendered portion of the 3D recon-
structed mesh. Finally, for the rendering process of the 3D
reconstructions we used no shading or lighting calculations,
faithfully reproducing the production’s reconstructed mesh.
Survey. We developed an application implementing the
aforementioned pairwise comparison methodology with un-
restricted voting times that was then presented to the sub-
jects participating in the experiment. The application would
rotate along the 360 total comparisons enforcing a minimum
viewing time of 3 seconds before allowing voting. Moreover,
to counter potential biases of the users consistently voting



to the same side (right or left) when they see no difference,
the application would randomize the order (left/right) of the
presented rendered images. Finally, the application would
also collect the demographics of the users namely their age,
gender and whether they have previous experience with 3D
reconstructions.

We scheduled a 45 min survey per subject, giving room
for average voting times of slightly higher than 5 seconds
and a small break in the middle to avoid fatigue. We were
not strict in enforcing the aforementioned time limit in the
total duration of the survey for each subject. Each one would
participate in their own pace, with some finishing in 20 mins
and others in 1 hour. The average duration of the survey
per subject was 45.2 mins. In total, 30 subjects aged from
25 to 43 were surveyed with their detailed demographics
presented in Table 1. We chose the number of subjects in
accordance with [25] where in their analysis it is shown
that increasing this number beyond 30 would not signifi-
cantly decrease statistical metrics like confidence intervals
or RMSE.

4. Results

We chose to process the survey data by using the toolbox
provided by Perez-Ortiz et. al. [25]. The computed math-
ematical model gives a rating to each pair of production
parameters based on the subjective data collected by the
survey. By convention, the first examined quality is given a
zero rating and the rest are assigned a relative score with
respect to the initial, based on the subjective data. As a result
of this, we can directly compare the various qualities and
gain insight on which parameter has the biggest impact on
the user’s quality of experience.

Furthermore, following the guidelines of the respective
paper [25], we performed outlier detection on the collection
of our subjective data. However, quite surprisingly, the
outlier detection method proposed in [25] did not find any
outliers in our data collection. This probably means that
the opinions of all subjects more or less converge to the
same values. Moreover, this also strengthens our position in
claiming that the generated dataset had meaningful pairwise
comparisons.

The final visual quality score of the production param-
eters given by [25] is shown in Figure 5 in the form of a
heat-map, while the actual score values are presented inside
the cells. The three geometry resolution levels (G1, G2,
G3) correspond to geometry resolutions 32, 64 and 128,
while the three texture levels (T1, T2, T3) correspond to
texture resolutions of downscale ×4, downscale ×2 and
finally Full-HD. From the heat-map it is evident that the
subjective visual quality is a monotonically increasing func-
tion of geometry and texture resolution with respect to both
parameters. For constant geometry resolution, the visual
quality is a monotonically increasing function of texture
resolution and vice versa. However, the visual quality of all
meshes produced by texture resolution level T1, regardless
of geometry resolution, are almost equally bad. Moreover,
for geometry resolution level G1 there are more substantial

differences in subjective visual quality when texture resolu-
tion increases. This is a well known fact in the 3D Graphics
research community as it describes the case where higher
texture resolution masks geometric artifacts [7].

However, the geometry resolution level G1 with the best
possible texture does not outperform geometry resolution
level G2 with the medium texture level. This is in con-
trast to geometry resolution level G2 with the best texture
scoring slightly higher than geometry resolution level G3
with medium texture. This fact can be explained by the
following argument. The geometry resolution, besides the
overall fidelity of the produced triangle mesh, is also directly
linked to the reconstruction of finer details like the hands
and the face. In addition, given the way the textures are
applied to the mesh, it also affects the overall visual quality
as lower geometry resolutions manifest into stronger color
discontinuities and deteriorate the accuracy of the texture
mapping process [4]. From the experimental results it is
deduced that transitioning from geometry resolution level
G1 to G2 is more substantial than transitioning from level
G2 to level G3.

Overall, as a conclusive point we can say that 3D re-
constructions with the worst texture or geometry resolution
value are highly undesirable and those pairs of parameters
should be avoided in respective applications. On the other
hand, the heat-map’s mid point (geometry resolution level
G2 and texture resolution level T2) seems to be a good
compromise between visual quality and performance of the
real-time 3D reconstruction pipeline as this combination
of parameters can boost performance in both frame-rate
and resulting network bandwidth when used in network
applications. However, starting from this optimal quality and
looking to improve it, we are faced with a dilemma: which
resolution do we increase? While the scores acquired in this
study point towards improving the texture resolution, this
also comes at a great bandwidth cost as typically 4 images
are transmitted per frame. On the other hand, improving the
geometry resolution would result in less - but comparable -
gain, but instead increase the processing time. This issue
can possibly be addressed either adaptively or be tuned
differently for each specific application.

5. Conclusion

In this work we have conducted a survey to map the
production parameters of live 3D reconstructed meshes to
the resulting subjective visual quality. It involved pairwise
comparisons between pre-rendered views of 3D content
produced in different geometry and texture resolutions. Our
findings highlight the challenge associated with the selection
of those parameters in live 3D content productions. There
are two directions to improve the visual quality, one is
associated with higher bandwidth costs while the other
involves higher computational load. Whilst there are also
other aspects to be considered (e.g. compression), these
findings can be used to fine-tune the quality of experience
for live 3D content streaming on the production side.



Figure 5. Visual Quality Score vs Production Parameters. From Left to
Right: Geometry resolution: (G1)32, (G2)64 and (G3)128. From bottom
to top: Texture resolution: (T1) downscaled ×4, (T2) downscaled ×2,
(T3) Full HD.
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