
Fast deformable model-based human performance

capture and FVV using consumer-grade RGB-D sensors

Dimitrios S. Alexiadis, Nikolaos Zioulis, Dimitrios Zarpalas and
Petros Daras

Centre for Research and Technology-Hellas,
Information Technologies Institute,

6th km Charilaou-Thermi, Thessaloniki, GR-57001, Greece,
e-mail: dalexiad@iti.gr; nziolus@iti.gr; zarpalas@iti.gr; daras@iti.gr

Abstract

In this paper, a novel end-to-end system for the fast reconstruction of hu-

man actor performances into 3D mesh sequences is proposed, using the input

from a small set of consumer-grade RGB-Depth sensors. The proposed frame-

work, by offline pre-reconstructing and employing a deformable actor’s 3D

model to constrain the on-line reconstruction process, implicitly tracks the

human motion. Handling non-rigid deformation of the 3D surface and ap-

plying appropriate texture mapping, it finally produces a dynamic sequence

of temporally-coherent textured meshes, enabling realistic Free Viewpoint

Video (FVV). Given the noisy input from a small set of low-cost sensors,

the focus is on the fast (“quick-post”), robust and fully-automatic perfor-

mance reconstruction. Apart from integrating existing ideas into a complete

end-to-end system, which is itself a challenging task, several novel technical

advances contribute to the speed, robustness and fidelity of the system, in-

cluding a layered approach for model-based pose tracking, the definition and

use of sophisticated energy functions, parallelizable on the GPU, as well as

Preprint accepted for publication - Pattern Recognition March 9, 2018

a new texture mapping scheme. The experimental results on a large number

of challenging sequences, and comparisons with model-based and model-free

approaches, demonstrate the efficiency of the proposed approach.

Keywords: Dynamic mesh sequences, RGB-D sensors, 3D reconstruction,

articulated motion, surface deformation, deformable models, Free Viewpoint

1. Introduction

With the convergence of technologies from computer vision, computer

graphics, multimedia and relevant fields, the development of new media

types, such as Free Viewpoint Video (FVV) [1], is now enabled. In this

work, we deal with 360◦ FVV of human performance, where the 3D content

is modelled on the basis of 3D textured meshes, since this is the only option

that enables interactive full-3D experience from a small set of capturing cam-

eras [1]. This selection however introduces the need for robust and accurate

3D reconstruction, which is a challenging task.

While recent FVV systems provide high quality results [2], apart from

being quite slow, they require very expensive setups. In this paper, a low-

cost, end-to-end system for human performance reconstruction, is described.

We focus on the fast (“quick-post”), realistic reconstruction using consumer-

grade RGB-D sensors, which introduce several challenges, such as noisy and

unsynchronized input. More importantly, we target time-coherent 3D recon-

structions, and specifically dynamic mesh sequences, i.e. meshes with con-

stant vertex/face count and connectivity across frames, which enable their

efficient compression, storage and streaming [3], in contrast to Time-Varying

Meshes (TVM) [4]. Towards this end, a novel deformable model-based recon-

2

struction system is proposed, i.e. a system that exploits a-priori knowledge

about the captured subject to parameterize and constrain the reconstruc-

tion process. The method relies on the automatic off-line generation of the

actor’s model and on-line human pose tracking and surface deformation to

finely match the captured data. Implicitly, the method tracks robustly the

skeletal user’s motion. Although the idea of model-based reconstruction is

not new, to the authors knowledge, the proposed system is among the first

few model-based ones that make use of low-cost RGB-D sensors. It can

reconstruct faithfully and fully-automatically the surface details, as well as

texture; while, it performs faster than state-of-art (SoA) model-based meth-

ods that use multiple passive or active cameras.

Given the dynamic (vs time-varying) nature of the output mesh sequence,

efficiently encoding/decoding the data is possible (e.g. [3]). Although the

proposed reconstruction method does not generate meshes in real-time frame-

rates, the efficient decoding of the output mesh data and the use of OpenGL

shaders for 3D rendering in real-time is straightforward, i.e. the output data

of the method is appropriate for real-time FVV applications.

A major contribution of the current work is the appropriate selection,

combination and integration of existing ideas into a complete end-to-end

system. Additionally, novel technical contributions are proposed, in order

to achieve the given objectives, including: i) The introduction of a 3-layers

framework, where the first layer is fast and each next layer (executed only

when needed) is slower, but more robust; This layered approach introduces

speed and robustness in pose tracking; ii) Instead of modeling human joints

as a concatenation of 1-DOF joints, a full 3-DOF model is exploited, which

3

lets also the implicit application of valid human-pose constraints; iii) A set

of sophisticated energy functions, fast computable and parallelizable on the

GPU is proposed; iv) The final surface, deformed iteratively via a Laplacian

framework, is textured taking advantage of the dynamic nature of the output

meshes.

The rest of paper is organized as follows: In subsection 1.1, the related

SoA approaches are presented, discussing also the differences with the pro-

posed one. Section 2 gives an overview of the proposed framework, while

sections 3, 4 and 5 provide all the necessary theoretical and technical details.

The experimental results on a large number of sequences and comparisons vs

relevant recent approaches, presented in section 6, demonstrate the efficiency

of the proposed approach.

1.1. Related work

Initially, a short survey on per-frame (static) 3D reconstruction from mul-

tiple sensors is given; Kinect-based systems for time-varying reconstruction

are then reviewed, before focusing into the more relevant model-based meth-

ods.

Per-frame (static) reconstruction from multiple sensors

Although several passive RGB camera-based methods can be found, e.g.

[5] and [6], due to their quite slow performance, they are mainly used for

the off-line reconstruction of static objects. Other simpler methods are of-

ten preferred, such as Shape-from-Silhouette (SfS) methods [7, 8], but their

quality may suffer, especially with a small number of cameras and without a

green-screen background for robust silhouette extraction. To cast such meth-

ods more robust to inconsistent silhouettes, errors in background subtraction

4

etc., the 3D shape recovery problem from the available noisy silhouettes is

often formulated as a continuous energy minimization problem that employs

regularization terms, as e.g. in [9], increasing significantly however the com-

putational effort.

Space-carving or voxel-coloring techniques [10, 11], although potentially

more accurate, are generally less robust, since they are based on making

irreversible decisions on voxels’ removal. A semi-supervised SfS approach is

described in [12], which employs a user-defined contour as a starting point to

obtain “probabilistic” silhouettes of successive images; thus obtaining a prior

distribution for the probability of a voxel being carved. The method combines

the advantages of SfS techniques and statistical space-carving approaches.

Finally, the idea of multi-view stereo has also been much investigated [13,

14, 15, 16], with [13] having pioneered FVV research with the “Virtualized

Reality” system, using a dome of 51 synchronized cameras.

Instead of acquiring the depth information from passive stereo pairs, ac-

tive direct-ranging sensors can been used. Relevant methods have been early

proposed for the fusion of range data [17, 18], to produce, off-line, a single

mesh. Due to their robustness against noise, recent explicit-fusion methods

[19] or implicit-fusion volumetric methods, such as the Poisson [20] and its

ancestor Fourier Transform (FT)-based method [21], are worth mentioning

here.

The referenced methods work on a per-frame basis and the production

of time-coherent meshes is possible only with post-processing on top of such

methods [22].

Kinect-based systems for TVM reconstruction

5

As the technology of real-time structured light-based [23] and Time-Of-

Flight sensors is getting mature and with the appearance of consumer-grade

RGB-Depth cameras, variations of the referenced active sensor-based ap-

proaches [17, 18, 21] have been employed, targeting mainly real-time 360o

reconstruction for tele-presence applications [24, 25, 26]. Such methods,

working on a per-frame basis, do not produce time-coherent meshes.

In another class of Kinect-based systems, the information in multiple

consecutive frames is fused to produce smooth reconstructions using a sin-

gle sensor. With optimized GPU code, real-time operation is achieved: The

recent and promising “Dynamic Fusion” (DynFu) work by [27] can recon-

struct slowly deforming objects (e.g. slowly moving upper body) in a real-

time SLAM framework, where apart from the camera pose, a volumetric

6D motion field is also recovered. The VolumeDeform system [28] improves

the DynFu idea, by combining the dense depth-based constraints with the

extraction and use of sparse RGB-based 2D features. These methods ob-

tain remarkable results, given the noisy Kinect input. Nevertheless, they are

applied with a single sensor at close distances, for relatively slow motions,

while they do not address the texture mapping problem, and produce TVM

sequences.

Model-based methods

Apart from the depth cameras-based methods that are presented later

in this subsection, most model-based methods make use of passive RGB

cameras. Below, we differentiate between pure motion capture methods, i.e.

methods that focus only in pose estimation, and full “performance capture”

methods that additionally handle highly non-rigid deformations.

6

Human pose estimation and tracking: Among the first works on model-based

FVV of humans, Carranza et al. [29] extract the actor’s silhouettes in 8

synchronized views and recover the model’s pose sequentially (i.e. initially the

torso and then the limbs) by minimizing a silhouettes-based energy. Although

the “puppeted” (skeleton-based deformed) model is only roughly aligned with

the silhouettes, an accompanying texture-mapping approach is also proposed.

A survey on model-based pose estimation can be found in [30]. Bregler

et al. [31] demonstrated for the first time a technique that is able to track

articulated human body configurations, by integrating the notion of “twists”

from the robotics community [32] into differential optical-flow. Many relevant

SoA methods [33, 34, 35, 36], which track the human pose using Inverse

Kinematics (IK) and make use of “twists”, are correspondence - based, i.e.

they are based on the key idea of collecting correspondences between 3D

points of the model and 2D points on the image observations.

Gall et al. [36, 37] propose the use of a particle-based, global optimization

approach, well suited to the problem of skeletal human motion, the Inter-

acting Simulated Annealing (ISA) [38]. An energy function with silhouette,

appearance and physical constraints is optimized in [36]. Their ISA-based

approach, although very slow, provides robust skeletal motion tracking. Simi-

lar annealed particle filter-based methods for human pose estimation tracking

have also been proposed, e.g. [39].

Brox et al. [33] propose the combined use of 2D contour-based corre-

spondences and region fitting with dense optical flow and SIFT features to

handle large transformations. Corazza et al. [34], instead of searching for

correspondences on the 2D plane, construct the visual hull and collect 3D

7

correspondences with the model, through an articulated ICP.

Finally, a sub-class of pose estimation methods, which are based on learn-

ing from large training sets, should be also mentioned here [40, 41, 42]. For

example, the work in [40] reconstructs the 3D body pose from image se-

quences based on top-down learning: In the learning stage, the body model

database is constructed by classifying the training data into sub-clusters with

silhouette images, while in the reconstruction stage, the cluster for the best

matching silhouette image is searched using silhouette history images. In the

training phase of [41], the human motion subspace is extracted by perform-

ing conventional PCA on a sample set of motion capture data, so that to

reduce the problem dimensionality and make the pose recovery process more

effective. For the pose-recovery phase, an annealed genetic algorithm is used

to search the optimal human-pose solution. In [42], a number of “activity

models” is defined, each learnt for a particular class of human activity. A

“multiple activity model annealed particle filtering (MAM-APF)” scheme is

then proposed to efficiently combine of these learnt activity models.

Full “performace capture”: In the work of Vlasic et al. [43], the visual-

hull is initially reconstructed and the human pose is recovered by minimizing

an objective function that incorporates the signed distance of the skeleton

bones from the visual-hull surface, a temporal smoothness term, and the

distance of end-effectors from the extremities. As stated by the authors, the

tracking system may fail on complex motions. In a second stage, refinement

of the “puppeted” model is realized, using a Laplacial deformation framework

[44, 45]. The target positions of model’s silhouette rim vertices are obtained

by matching with the silhouette contours.

8

Gall et al. [35] propose the use of a 2-Layers approach for pose tracking.

When the first layer fails, the second layer is used to recover the pose of

misaligned limbs. The 1st layer collects a sufficient set of 3D model-to-

2D correspondences, relying on silhouette contours and texture information.

The slower 2nd layer, relying on ISA-based optimization, incorporates an

additional silhouettes-overlap term. Finally, the model’s surface is refined by

moving the silhouette rim vertices towards the corresponding 2D silhouette

contours, via Laplacian deformation.

De Aguiar et al. [46], abandoning the use of a skeleton structure, use a

low-resolution tetrahedral mesh for low-frequency tracking, via a volumetric

Laplacian deformation toolbox and exploiting silhouette and SIFT features

correspondences. The deformation of the tetrahedral mesh is then transferred

to its high-resolution triangle mesh counterpart, which is finally updated via

standard Laplacian deformation.

The works of Straka and his colleagues [47, 48] have also to be mentioned

here. Based mainly on silhouette constraints from multiple cameras, they

achieve high-rate performance. More specifically, in the RapidSkin work

[47], focusing mainly to the skeleton-free deformation part, they propose a

novel fast solver to iteratively solve nonlinear constraints, in order to deform

a roughly pose-aligned model using silhouette and Laplacian-deformation

smoothness constraints. In [47] they derive a problem formulation that allows

to jointly optimize for pose and shape and can be efficiently computed. They

propose an alternative to transformation-based skinning methods that finally

allows to obtain an optimal deformation using linear solvers.

Most of the works so far require green-screen background (for robust sil-

9

houette extraction) and several cameras to faithfully track and reconstruct

the surface geometry. A recent method [49] however works with a single

stereo rig. Based on appearance cues, scene flow and stereo coherence, it

achieves foreground extraction. Tracking is realized by minimizing a function

that incorporates silhouette, depth (extracted as part of scene flow compu-

tation) and shading consistency constraints. The method is slow, requiring

computations of several minutes. Still, the achievements are remarkable,

given the use of a single stereo pair.

Depth sensor-based methods: In the work of [50], a custom active IR stereo

pair is employed, for generating compelling depth input. With highly op-

timized GPU code, reconstruction of slowly deforming objects is achieved

at high frame rates. The method, during a “template acquisition” phase

constructs a model of the user, which is then fitted to the live 3D data

based on dense model-to-data constraints and as-rigid-as-possible (ARAP)

regularization. The method’s results are remarkable; however, it has been

demonstrated with a single sensor at close distances and no textured results

are given. Additionally, as admitted by the authors, the method can handle

only a limited amount of frame-to-frame deformation.

The work of [51] proves the concept of using a model-based approach with

Kinect cameras for skeleton-based motion capture of human actors. Dou et

al. [52] have presented a system for acquiring a human 3D template model

by fusing multi-frame data from eight Kinect sensors. The template is then

deformed on a per-frame basis to align with the live 3D data, by tracking a

set of uniformly sampled nodes. The method is the first one demonstrating

non-rigid tracking from a set of commodity RGB-D sensors. However, the

10

method accounts only for low-frequency deformations and since it does not

employ texture mapping, it cannot reproduce facial expressions. Finally,

its tracking part requires a computational time of one minute per frame,

significantly high compared to the proposed one.

In a more recent promising work [53, 54], Ye et al. achieve fast robust

pose and shape estimation from a depth camera, by embedding the articu-

lated deformation model into a probabilistic framework. The method does

not require explicitly establishing 3D correspondences between the human

template and the observed point cloud. Instead, based on the assumption

that the observed point cloud follows a Gaussian Mixture Model (GMM),

whose centroids are the vertices of the deformed template, pose estimation

is cast as a negative log-likelihood minimization problem, which is solved

iteratively using Expectation-Maximization (EM). Their surface estimation

algorithm is seamlessly combined with the pose estimation component within

the same probabilistic framework. Through an optimized CUDA implemen-

tation, the authors achieve a high frame-rate performance.

Recently, Ichim and Tombari [55] proposed another depth camera-based

algorithm for pose and shape modeling estimation. The problem is formu-

lated as a global energy minimization problem that includes 3D correspon-

dences (point-to-plane) and contour constrains, combined with 3D feature

constraints on the joint positions (obtained as the output of NITE or Kinect2

skeleton tracking), as well as prior energy constraints to limit the tracking

algorithm within a learnt/trained subspace and temporal smoothness con-

straints. It aims to estimate both the skeletal pose and the global shape

of the body (as the weighted average of BlendShapes) in two corresponding

11

alternating optimization stages.

Other, high-quality systems

A complete system for high-quality FVV of humans has been recently

described in [2]. An expensive professional studio makes use of a green-

screen stage with uniform lighting, encircled by totally 106 synchronized

high-speed cameras, 53 HD RGB cameras and 53 IR cameras paired with

IR laser sources. The method, combining RGB stereo, IR stereo and SfS,

produces a set of separate point-clouds, which are combined using a Moving

Least Squares (MLS) projection approach. A visual hull-based extension of

Poisson reconstruction [21] is proposed for meshing. To enable efficient mesh

compression, key-frames are detected and a non-rigid ICP-based approach

is employed for mesh tracking and time-coherent tessellation between key-

frames. The whole pipeline performs off-line at rates of 0.5 minutes/frame.

2. Preliminaries and method’s overview

2.1. Capturing of multi-view RGB-D videos and TVM reconstruction

While the proposed methodology is applicable with data from any RGB-D

sensor, the MS Kinect v2 was adopted in our multi-view capturing platform.

As a compromise between system’s complexity and coverage area, K = 4

sensors are utilized, uniformly arranged on a circle and all pointing to the

center of the captured area, as described in our previous work [26].

Time-Varying raw and watertight reconstructions

During the on-line phase of the proposed system, a per-frame TVM re-

construction is needed to guide both articulated pose tracking and surface

12

deformation (sections 4 and 5). To obtain the required per-frame recon-

struction, initially, a simple and fast approach is used to extract the set of

“foreground” pixels u ∈ Fk on the k-th depth-map Dk(u). A “raw” 3D

point xk(u) = Π−1k (u, Dk(u)) is then reconstructed for each pixel, where

x← Π−1k (u, Z) describes the projective-to-world mapping of the k-th depth

camera. Apart from the “raw” point positions, the corresponding normals

nk(u) are also estimated. For details, please refer to [26].

Although the raw 3D data might be sufficient, for reasons explained in

subsection 4.5 we proceed by reconstructing a watertight surface. This is

achieved by applying the volumetric Fourier Transform (FT)-based recon-

struction method [21], using our GPU CUDA-based implementation [26],

which can reconstruct the human surface at a volume resolution of 128 ×

256× 128voxels in approximately 100msec.

2.2. Performance capture overview

The overall approach is described in the diagrams of Fig. 1 and consists

of two phases:

I. Off-line phase: Generation of a deformable 3D model, look-alike of the

user, via: A) Reconstruction of a smooth watertight 3D mesh, with the

user in a relatively “neutral” pose; B) Automatic rigging and skinning of

the model, i.e. fitting a pre-defined skeleton and calculation of skinning

weights; C) Definition of valid human-pose constraints.

II. On-line phase: Per-frame deformation of the human model, through:

A) Skeleton-based deformation (implicitly skeleton tracking) of the model

to “explain” the captured RGB-D data: This is performed by continuous

13

Figure 1: Overview of the proposed method. The method consists of the (a) Offline and

the (b) Online phase. See text for details.

14

(a) Skeleton fitting and skinning weights (b) Handle vertices

Figure 2: (a) Automatic Pinocchio [56] rigging and skinning; (b) The set of handle vertices

H0, encoded with color based on model’s segmentation.

“tracking”/optimization, in a three-Levels framework; B) Laplacian de-

formation of the model, within an iterative framework, to handle highly

non-rigid deformations (e.g. garments’ wrinkles) and finely “match” the

input 3D data; C) Texture mapping.

3. Off-line human template modelling

3.1. Human model reconstruction & automatic rigging

While a 3D user scanning approach could be used, e.g. exploiting a range

scanner in a KinectFusion framework [57], as e.g. in the work of [52], we

employ a simpler and much faster approach. Since the multi-Kinect capturing

platform is available, the user is captured in a “neutral” pose. A raw point-

normal cloud is obtained from a single frame, which is then turned into a

watertight manifold mesh via Poisson surface reconstruction [20]. Poisson

15

reconstruction is applied with a tree-depth equal to r = 8, generating models

of approximately 30000 vertices / 60000 faces.

We note that capturing a strict “neutral” pose, such as a T-pose, is not a

prerequisite, as shown in Fig. 2(a). The pose should simply be not too com-

plex, so that automatic skeleton embedding can be realized. The “Pinocchio”

method [56] is exploited to realize such a skeleton embedding (rigging) and

define how the surface is deformed by the skeletal motion (skin attachment).

Focusing on standard linear blend skinning (LBS), Pinocchio assigns vertex-

to-bone weights based on the proximity of the embedded bones, smoothed

by a diffusion equilibrium equation over the surface. We use the default

Pinocchio’s skeletal structure, consisting of 18 joints (including the root).

An example for the “Lenia” actor, is given at the left of Fig. 2(a). In our

application, the two small bones at the soles are not rotated, therefore, ig-

noring them, our skeletal structure consists of J = 16 joints. A color-coded

visualization of the skinning weights, is given at the right of Fig. 2(a).

Model’s coarse segmentation:

Given the skinning weights, the model is also automatically segmented

into 6 district parts, the trunk, the head, the arms and the legs. This segmen-

tation/labeling is performed by finding for each vertex the maximum weight

and assigning the corresponding label.

Definition of handle vertices H0

A subset of the model vertices is additionally selected as a set of “han-

dles”. This set, denoted as H0, is used during the online tracking process,

as will be described in subsection 4.3. An example is given in Fig. 2(b).

Specifically, the handle vertices are selected randomly, with probability 30%

16

at the arm limbs, 15% at the legs and the head, 10% at the trunk regions.

The denser selection of handles at the arms is intuitively justified by the facts

that i) the arms are smaller than other body parts, i.e. have fewer vertices; ii)

in most scenarios, their motion is faster and more complicated, and therefore

more difficult to be tracked.

3.2. Human pose parameterisation

Rotation formulation using the exponential map

Among the various alternatives available to parameterize 3D rotations of

joints (rotation matrices, Euler angles, or quaternions), an axis-angle rep-

resentation is employed, via the Exponential Map [32, 30, 58]. Specifically,

the practical exponential map-based formulation described by Grassia [58] is

used: An exponential map of a 3D vector ω to a unit quaternion q = {qs,qv}

is given from:

q = eω =

{cos
(
θ
2

)
, ω̂ sin

(
θ
2

)
}, if ω 6= 0

{1,0}, if ω = 0,

(1)

where θ = |ω| and ω̂ = ω/|ω| are the angle and axis of rotation, respectively.

To simplify the task of applying constraints to ball-and-socket joints, the

rotation can be thought as being composed of a 2-DOF “swing” component,

and a 1-DOF “twist” component that defines the bone’s rotation around

itself. In order to define a 2D basis for the swing rotation, two orthogonal

unit vectors are selected, ŝ1 and ŝ2 on the plane perpendicular to the unit

bone axis b̂, specifically from: ŝ1 = b̂ × b̂p and ŝ2 = ŝ1 × b̂, where b̂p is

the direction of the parent bone. A desired swing rotation is given by the

exponential map of the vector ωs = ps1 ŝ1 + ps2 ŝ2. The twist rotation is

17

parameterized by a single angle value, let pt, about the bone axis. Using

the above notation, the parameters vector p = [ps1 , ps2 , pt] defines the 3D

rotation of a joint.

In our implementation, apart from the root joint that is represented by 6

parameters (translation and 3 Euler angles), all other joints are represented

by 3 DOFs, and therefore, the pose is described by a vector P of length

Np = 6 + 3(J − 1) = 51, as the concatenation of all joints parameters pj, j =

0, . . . , J − 1.

We have to highlight that the Exponential Map (in its skew-symmetric

matrix formulation [32]) is used in many relevant methods [30, 31, 35, 34, 36].

These however, in contrast to our method, parameterize 3-DOFs joints as

the concatenation of 1-DOF (revolute) joints, which introduces limitations

in terms of singularities [59].

Human joints rotation limits

Rotation constraints are implicitly applied through the definition of a

penalty function, which is zero when rotation remains inside a “valid” range

and increases smoothly as the rotation goes outside this range, in order to

assist smooth convergence of the online optimization procedure. Specifically,

with respect to the swing component, ellipsoidal angular constraints are used.

For each joint, an elliptical region E(r, c): (ps1 − c1)2/r21 + (ps2 − c2)2/r22 ≤ 1,

defines the limits for vector ps = [ps1 , ps2]. The penalty, outside the ellipse,

is given by:

fs(p) = D2
(
ps; E(r, c)

)
/C2, (2)

where D2
(
ps; E

)
is the squared Euclidean distance of ps from the ellipse and

C = 15o a pre-defined scale factor. With respect to the twist component,

18

Figure 3: The three-layers skeleton-based pose estimation approach.

a penalty ft(p) is defined, which equals the squared distance of pt from a

“valid” range [pmin
t , pmax

t], normalized by C2. The total penalty equals the

sum of both, i.e. f(p) = fs(p) + ft(p).

4. Skeleton-based pose estimation

4.1. A three-layers approach

The proposed method estimates the pose parameters P(t) for the current

frame t, in a tracking framework, given the previous frame’s parameters

P(t − 1). It consists of three distinct layers, shown in Fig. 3. Layer #1 is

executed for each frame, whereas a next layer is executed only if needed, in

19

the case of a limb’s tracking failure. Each next layer offers higher tracking

robustness, being however slower.

Given the reconstructed time-varying mesh for the current frame, Layer

#1 estimates all Np = 51 pose parameters simultaneously. Iteratively, it finds

target positions for the model’s handle vertices and estimates the optimum

pose parameters that minimize handles’ distances to those target positions.

On the other hand, the major task of Layer #2 is to re-enforce a limb

towards its correct pose, when its tracking has been lost. Layer #2 operates

by minimizing a sophisticated energy function, via a local optimization al-

gorithm. It handles each misaligned limb separately, increasing speed and

robustness: Given the fact that the torso is well aligned by Layer #1 (al-

ways verified in practice), there is no obvious reason to handle all misaligned

limbs jointly, which would increase computational effort and the chance to

get trapped in a bad local minimum.

Whereas practically failure of Layer #2 is rare, Layer #3 was added to

ensure that no human manual intervention is needed in the whole framework.

Handling also each misaligned limb separately, it searches for the global min-

imum of the same energy function via a slow, but robust global optimization

algorithm, the Interacting Simulated Annealing (ISA, [38]).

4.2. A 3D data association approach

Both the pose estimation algorithm of Layer #1 and the surface deforma-

tion approach of subsection 5.1 need a 3D data association mechanism, which

computes a target 3D position for a vertex of the source model. A mecha-

nism similar to the one of [60] is proposed. For a given source vertex of the

template model, the nearest points of the target mesh are initially searched,

20

within a sphere of radius R. The points with normals that significantly de-

viate from the normal of the source vertex are rejected. Specifically, the

inner product of the source normal and each target point’s normal is tested

against a threshold αmax. From the remaining target points, their weighted

centroid is computed, with the weights selected from w = R−d
R

, where d is

the Euclidean distance of a target point from source. Finally, the target dis-

placement is restricted only along the normal direction, to avoid tangential

drift.

We highlight that in some cases, the source point may be not associated

with a target position, because no target points with “similar” normals exist

in its spherical vicinity. This is the case when tracking of a limb has been

lost and the model limb’s vertices are not close enough to any target raw

points.

4.3. Layer #1: Correspondence-based pose estimation

The pose estimation algorithm of Layer #1 can be summarized as fol-

lows: Given the pose of the model in the previous time-instance, for each

handle vertex of the deformed model vi(P), i ∈ H0 the corresponding target

positions xi are estimated using the method of subsection 4.2. Then, using

the Levenberg-Marquardt (LM) non-linear optimization algorithm [61, 62],

the “robust” point-plane error

E(P) =
∑
i∈H0

[
1 + fj(i)(P)

]
ψ
(
nT
i (xi − vi(P))

)
(3)

is minimized, where ψ() is the robust Tukey penalty and fj(P) is the natural-

pose constraint function, calculated as described in subsection 3.2. The sub-

21

script j(i) denotes the joint to which the i-th vertex is mostly associated.

ni = ni(P) stands for the normal of the i-th model’s vertex.

Sequentially, the model is deformed using the estimated optimum param-

eters and the method is iteratively applied in exactly the same way. In each

iteration however, the search radius R for the 3D data association method is

halved and the inner-product threshold αmax is increased. In this way, hav-

ing ensured that each previous iteration brings the model closer to the actual

pose, the pose “detail” is sequentially improved. Practice showed that three

iterations are adequate. In all our experiments, the initial search radius and

the inner-product threshold have been set R=300mm and αmax=0.5.

We note that the FT-based reconstructed surface (see subsection 2.1)

constitutes the input to the proposed algorithm, although it practically works

equally well with the raw 3D point-cloud as input. The only reason for

selecting the FT-based reconstruction is explained in subsection 4.5.

4.4. Layers #2 and #3

4.4.1. Definition of the energy function

In Layers #2 and #3 the pose parameters are estimated by minimizing a

sophisticated energy function. In the ideal case, one would like to minimize a

3D Hausdorff distance-like function, i.e. the distance of the model to the input

3D point-cloud and vice-versa. Such an approach would however require a

closest-point search process, which is generally computationally expensive,

for each tested parameter vector P. Therefore, it would be prohibitive in

our problem, given the nature of Layers #2 and #3, which involve several

iterations / parameter tests. Thus, with respect to the model-to-input points

distance, we introduce a distance metric that is based on the calculation of a

22

volumetric distance-field. The calculation of this field is fast and performed

only once at each time instance. With respect to the input cloud-to-model

distance, we introduce a function that is calculated on the 2D depth image

plane and its calculation can be very fast (a few msec). Additionally, a

silhouette-based metric is introduced.

3D distance field-based energy

The objective is to calculate a scalar function F (χ), defined over a dis-

crete 3D grid, which describes the Euclidean distance of each voxel χ from

the nearest point in the input cloud. To that end, the human bounding box is

discretized into voxels of size 1cm3. A binary volume function B(χ) ∈ {0, 1}

is initially constructed, by “splatting” each sample xi to its containing voxel.

The separable algorithm of [63] is then used to compute the exact Euclidean

Chamfer distance transformation of B(χ), denoted as F (χ). The selection

of the specific algorithm was based on its ability to calculate the exact trans-

formation in a linear time (O(N), where N is the number of voxels) and due

to its separable nature that enabled our efficient GPU implementation. An

example distance field is given in Fig. 4.

Given the volumetric distance field, the model-to-input cloud distance

energy is calculated from:

E1(P) =

√√√√1

I

I−1∑
i=0

(
F
(
χ[vi(P)]

))2
, (4)

where χ[v] denotes the voxel that contains vertex v, while vi(P) is the i-th

vertex of the model. Given the definition of the distance field F (χ), the

energy E1(P) equals the RMS closest-point distance of the model from the

input point-cloud and is expressed in mm.

23

Energy metrics on the 2D image plane

The specific metrics are calculated by i) projecting the model mesh onto

theK depth-sensor planar views, in order to obtain the depth mapsDM
k (u; P)

and ii) “comparing” the “rendered” depth with the input foreground-segmented

depth mapsDk(u). From an implementation point-of-view, using the OpenGL-

CUDA interoperability framework, computations can be extremely fast. The

energy metrics described below, are also explained in Fig. 5.

Closest point-like energy: For each view k = 0, . . . , K − 1, the depth map

DM
k (u; P) is back-projected onto the 3D space to generate the 3D points

vk(u; P). Similarly, we have the raw 3D points xk(u) from the input depth

map. For each foreground pixel u ∈ Fk of the k-th input depth map, we

define the truncated squared distance metric:

ek(u; P) = min
(

min
u1∈N (u)

{
||xk(u)− vk(u1; P)||2

}
, T 2
)
, (5)

where N (u) is a rectangular neighbourhood around u, of size 31×31 pixels

and T=150mm is a truncation distance threshold, selected based on the size

of N (u) and the camera’s intrinsic parameters. The overall energy is given

from:

E2(P) =

√
1∑
k |Fk|

∑
k

∑
u∈Fk

ek(u; P), (6)

where |Fk| denotes the number of foreground pixels in the k-th view. The

energy E2, like E1, is also expressed in mm.

Silhouette-based energy: Additionally, the binary 0/1 silhouette masks Sk(u)

and SM
k (u; P) are obtained from the corresponding depth maps. A silhouette-

similarity energy metric is defined from:

E3(P) =
50∑
k |Fk|

∑
k

|Sk ⊕ SM
k (P)|, (7)

24

Figure 4: Volumetric Euclidean distance field. Three slices Z=const of the distance field

are shown, along with a corresponding RGB view.

where ⊕ denotes the binary XOR operator and | · | counts for the number

of true (1) elements. The normalization factor 50∑
k |Fk|

is used to intuitively

assign to every non-matched (w.r.t. silhouette) foreground pixel a distance

of 50mm.

Collision-to-trunk penalty

To ensure avoidance of undesirable situations where a limb penetrates the

trunk, an additional penalty term is introduced. Instead of using a standard

collision-detection algorithm, which would be computationally demanding

and would result into a binary 0/1 discontinuous function, the notion of

Truncated Signed Distance Function (TSDF) [18, 64] is used. Given that

TSDF is calculated from a set of input depth images, we project the trunk

segment of the model onto a set of 8 virtual (OpenGL) cameras, equally

distributed on a circle of radius 2000mm. This is performed only once, at

the beginning of Layer #2. Given a truncation threshold µ, the TSD equals

−µ inside the object, µ outside the object and varies smoothly from µ to −µ

25

Figure 5: From left to right: i) Captured depth map; ii) Depth of the model; iii) Per-pixel

silhouette energy; iv) Per-pixel, closest-point distance energy.

near the object’s surface. In our algorithm, the TSDs of the arm vertices are

calculated. The minimum TSD is considered as the distance of the arm to

the trunk. Let this minimum TSD be denoted as d(P). A collision-to-trunk

penalty is defined from fc(P) = 1−d(P)/µ
2

∈ [0, 1]. In our experiments, µ was

set equal to 6cm.

Combined energy function

The combined energy to be minimized is given by:

E(P) =
[
1 + fc(P)

]
·
J−1∏
j=1

(1 + fj(P)) ·
3∑

n=1

wnEn(P), (8)

where En(P), n = 1, 2, 3 are given from (4), (6) and (7), respectively, and wn

are weights, set equal to unity in our experiments. The factor
∏

(1 + fj(P))

is used to express the natural-pose constraints, defined in subsection 3.2.

4.4.2. Layer #2: Downhill simplex optimization

Even by handling each limb separately, the dimensionality of the param-

eters space is quite high; e.g. the pose of an arm is affected by three joints

(shoulder, elbow, wrist), i.e. 9 parameters. Therefore, a fast, approximate,

26

gradient-free optimization algorithm is used. Specifically, the Nelder-Mead

downhill simplex method [65, Ch. 10] is selected, which is expected to require

fewer function evaluations per iteration than gradient-based methods.

4.4.3. Layer #3: Global ISA-based optimization

Layer #3 seeks for the globally optimal solution using ISA, a stochastic,

particle-based, global optimization approach. The ISA algorithm iterates

between a weighting, a selection and a mutation step, evolving the parti-

cles’ population towards the optimum solution. For details, the reader is

referred to [38, 36]. Here, only the necessary details for its application in our

framework are given: In our experiments, a) The number of ISA iterations

is fixed to 8 and the number of particles to M=2000; b) The initial parti-

cles’ population Pm,m = 1, . . . ,M , is uniformly sampled in the ranges that

express the human joints’ rotation constraints (see subsection 3.2); c) The

temperature-like parameter βi, used in the weighting step, decreases with

iterations i according to βi = (1+ i)0.7; d) The mutation step is implemented

similarly to [36], with the difference that we ensure that each “mutated”

particle lies within the ranges of natural-pose joints’ constraints.

4.5. Additional issues

Tracking initialization

For pose initialization in the first frame, Layer #3 is employed. Specifi-

cally, assuming that the actor in the 1st frame stands in a relatively neutral

(not extreme) pose, the initialization of each body segment is performed

sequentially: Firstly, the torso position-orientation (6 DOFs) is initialized,

and the limbs’ poses are then separately estimated. With respect to torso

27

initialization, two issues have to be highlighted: A) The energy functions

in equations (4)-(7) are calculated considering only the vertices of the torso

segment; B) Assuming that the user looks towards the frontal camera, the

ISA particles are initialized and constrained inside the interval [−15o, 15o],

for each Euler angle. With respect to position, the centroid of the raw input

mesh is calculated and the population is initialized to be ±300mm around

this centroid, along each direction. Five ISA iterations are applied with

M = 1000 particles. We note that accurate initialization is not of great

importance, because the pose parameters converge to more accurate values

during the first frames of the sequence, where Layer #1 is applied.

Automatic detection of limb tracking failure

It was practically found that a simple heuristic, which is based on the

employed 3D data association algorithm (subsection 4.2), can serve for the

robust detection of loss of tracking: For each limb, the percentage of model’s

handle vertices without associated target positions, denoted as C%, is com-

puted. The data association algorithm is applied with R = 75mm and

αmax = 0.7, i.e. with the same parameters used in the last iteration of Layer

#1. This means that we practically check the percentage C% during the

last iteration of Layer #1. When the percentage C% is above a threshold T ,

the limb is considered as mis-detected and the next pose-estimation Layer is

applied. In our experiments, the used threshold is T = 15% when checking

the output of Layer #1 and T = 40% at the output of Layer #2. Accord-

ing to our experiments, these values are adequately small to ensure that

loss of tracking is always detected. Although several false “alarms” may be

generated, this is not an important issue, as explained in the experimental

28

Figure 6: Example of progressive shape refinement, based on iterative Laplacian defor-

mation. From left-to-right: i) Raw 3D data, ii) Initial model (iteration #0), iii) Refined

model at iterations #1, #3 and #5. The color encodes the surface normals (no back-face

culling is applied).

section.

As foretold, the proposed algorithm works equally well when using as

input the raw 3D data or the FT-based reconstructed mesh. However, the

FT-based reconstruction is used as the target surface, due to the following

reason: Self-occlusions result into non-captured/reconstructed areas in the

raw 3D point-cloud. In contrast, the FT-based reconstruction produces a

watertight surface, regardless of occlusions, resulting practically into more

stable behaviour of C% during tracking. Consequently, the selection of ap-

propriate thresholds is easier and the described heuristic method works more

effectively.

29

5. Shape refinement and texture mapping

The skeleton-based deformation can lead to only a coarse match of the

model to the captured 3D data, since it is based on the assumption that the

model’s deformation is explained only in terms of the underlying skeleton.

Fine-scale surface detail is missing from the deformed surface. Thus, the

shape has to be refined, i.e. its vertices have to be smoothly shifted, to better

match the input 3D data. To this end, the coupling of model vertices to the

skeleton structure is abandoned and an iterative deformation framework is

proposed.

5.1. Laplacian deformation within an iterative framework

Similarly to other relevant works [43, 46, 35], we use a Laplacian defor-

mation framework [44, 45]. In contrast to these works however, which are

based on the human’s contour/rims 2D information that may be difficult to

be extracted and may not be adequate for complicated shapes with many

concavities, we use directly the available input 3D information. The idea is

based on the iterative refinement of the model’s shape, guided by local 3D

correspondences that are established using the 3D data association algorithm

of subsection 4.2.

The iterative algorithm can be summarized as follows: In each iteration,

the target positions {xi} of handle model vertices {vi}, i ∈ H(s), are com-

puted using the data association algorithm of subsection 4.2. In the first

iteration, only each s0-th vertex of the model (s0 = 8 in our experiments)

is considered as a handle vertex, and the search radius for the association

algorithm is set to R = 150. In each next iteration, the number of handles

30

is doubled (s ← 2 · s), until all vertices are used as handles in the last iter-

ations, i.e. se = 1, and the search radius is halved (R ← R/2). In this way,

each next iteration accounts for finer details. Practice showed that five itera-

tions are adequate. With respect to the inner-product threshold αmax of the

association algorithm, it is fixed to αmax = 0.7 (∼ 45o) in our experiments.

Given the target positions (handle constraints) X = [xT
0,x

T
1, . . .]

T in each

iteration, the energy

E(V) = ||CV−X||2 + ||LV− δ||2 (9)

is minimized to compute the model’s new vertex positions V = [vT
0,v

T
1, . . .]

T,

i.e. to find a smooth deformation of the model. Here, L is the cotangent

Laplacian matrix, δ are the differential coordinates, and C is a diagonal ma-

trix with non-zero weights only for constrained (handle) vertices, all set to

unity in our implementation. The second term in (9), which uses the Lapla-

cian, is a regularization term for the deformation defined by our constraints.

The minimization of (9) is a linear least-squares problem that is solved using

direct sparse LDLT Cholesky factorization.

An example is given in Fig. 6. As can be seen, the initial model (skeleton-

based only deformed) is aligned with the raw point-cloud, but its high-

frequency components (e.g. garment wrinkles) do not match the real ones.

Employing the proposed deformation method, the shape of the model is it-

eratively refined.

5.2. Texture mapping

A significant task for creating FVV video, which is not addressed by most

of the relevant “performance capture” methods, is the mapping of texture

31

to the generated meshes. In contrast to TVM reconstruction methods, e.g.

[26], the proposed framework can take advantage of the fact that the gener-

ated sequence is dynamic and there is one-to-one vertex correspondence from

frame to frame. Thus, in our method the model’s texture at a time instance

is obtained using both the live RGB frame and previous frames. Before going

into details, we initially describe a novel RGB pre-processing algorithm that

can enhance the final visual quality.

Handling background-on-foreground artifacts

In consumer-grade RGB-D devices, the RGB and depth sensors are not

synchronized and the calibration (mapping) between them is not perfect.

Thus, texture artifacts may appear, where the color of the background is

mapped along the boundaries of the reconstructed mesh. To partially over-

come such problems, a pre-processing step is proposed, applied to each RGB

view separately. The method consists of the following steps: a) Given the

silhouette map on the RGB image plane, apply two iterations of Close mor-

phological operation, using a circular mask of radius equal to 2pixels; b) Ap-

ply two iterations of Erosion filtering, with a circular mask of radius equal

to 3pixels, to remove L=2×3=6 layers of silhouette’s boundary pixels (i.e.

remove 6 times the silhouette contour); c) Augment the foreground pixels

into the background region, by assigning to each adjacent background pixel

the mean RGB value of the foreground pixels in its 3× 3 neighborhood. The

latter step is applied iteratively, 2L − 1 times. The sizes of the masks were

selected based on the resolution of the Kinect2 RGB images (1920 × 1080).

The objective of (a) is to close small holes (e.g. due to missing data in Kinect

depth views), so that they are not eroded by the next step (b). Steps (b)

32

and (c) aim at replacing the wrongly assigned color of the background along

the boundaries of the human silhouette. The reader can find an explanatory

example in the supplementary material document. The number of iterations

and mask sizes were selected intuitively and experimentally; similar morpho-

logical operator settings could be used to achieve the described objectives.

Combining RGB views at a single time instance

In order to produce the color of a vertex from the available RGB views at a

specific time instance, a color weighting approach [26] is employed. Instead of

using equal weights for all RGB views, i) the “viewing” angle of the captured

surface, as well as ii) the closeness of the 2D projection pixel to the human

boundaries on the color image plane, are taken into account. For details,

the reader is referred to [26]. For simplicity in what follows, let us denote as

T(vi, I) the process of calculating the color of vertex vi from the set of live

RGB views I.

Handling invisible vertices

To handle vertices that are invisible to all RGB cameras at a specific time

instance, the colors found in previous frames are used. If ci(t) denotes the

color of vertex vi at time t, this is updated from frame to frame using:

ci(t) =

ci(t− 1), if vi invisible to all cameras,

T
(
vi, I(t)

)
, otherwise,

This way, we maintain a color-per-vertex representation of the model’s tex-

ture.

Applying UV-texture mapping

A color-per-vertex rendering approach may lead to color aliasing, result-

ing into low visual quality, due to the fact that the resolution of the model

33

Figure 7: Texturing process. From left to right: i) An original RGB view; ii) Deformed

model, with color-per-vertex using the RGB information only in the current frame. Gray

vertices are those that are invisible to all cameras; iii) Final rendered model, using color-

per-vertex for invisible vertices and UV-texture mapping for the visible ones.

mesh is not in general very high, compared to the resolution of the original

RGB views. Therefore, we employ UV-texture mapping, where each visible

triangle is assigned multiple texture patches from the live RGB views and

rendered with OpenGL multi-texture blending, using the associated vertex

weights. Only triangles that are invisible to all cameras are rendered using

the color-per-vertex model’s representation. An example is given in Fig. 7.

Real-time FVV rendering

The output textured meshes, although generated off-line, can be straight-

34

forwardly rendered in real-time frame-rates with the use of OpenGL shaders.

With our shaders, the generated meshes can be rendered at frame-rates

>30fps.

6. Experimental Results

The test data were recorded with the multi-Kinect capturing setup de-

scribed in subsection 2.1 and comprise of 10 sequences, with 4 different actors,

3 males (“Apostolakis”, “Alexandros” and “Dalexiad”) in 4 sequences and

one female (“Lenia”) in 6 sequences, performing a set of various motions

that range from simple to challenging ones, such as kick-boxing actions or

fast athletic movements. In total, the sequences consist of more than 16000

frames, i.e. we have approximately 11 minutes of action at ∼25fps. The

RGB-D data, along with the necessary software for parsing, can be found at

http://vcl.iti.gr/performancecapture/dataset2/. Apart from the results pre-

sented here, a supporting-material document, along with a large number of

long videos, can be found at http://vcl.iti.gr/performancecapture/, demon-

strating that the proposed algorithm can faithfully track and reconstruct a

wide spectrum of actions.

6.1. Implementation details and processing hardware

For all the implementation details, please refer to our supporting-material

document. We note here that the 3D data association algorithm (subsection

4.2) and the calculation of the energy metrics of subsection 4.4.1, were par-

allelized to run on the GPU using CUDA. The rest of the code, including

all optimization methods (LM, Downhill-simplex and ISA), run on the CPU,

35

http://vcl.iti.gr/performancecapture/dataset2/
http://vcl.iti.gr/performancecapture/

Figure 8: Apostolakis2 sequence - Jumping jacks. Left: Two consecutive frames; Right:

The corresponding raw 3D data, the tracked skeleton and the corresponding “puppeted”

model, for the 2nd frame.

specifically on a single CPU thread. Thus, we see that room for implemen-

tation improvement exists and code optimization/parallelization can lead to

further run-time reduction. The presented experiments ran on a PC with an

i7 processor (3.4GHz), 16GB RAM, a CUDA-enabled NVidia GTX560 GPU

and a Windows7 operating system.

6.2. Qualitative evaluation

6.2.1. Tracking

As can be verified from Figures 8, 9 and the relevant Figures in the sup-

plementary document, as well as from the supporting-material videos, the

proposed method can robustly track a wide range of challenging motions, in-

cluding “tennis”, “punching and kicking”, “jumping”, “jumping jacks”, etc.

In Fig. 8, the raw 3D data coming from different Kinect sensors are not per-

fectly aligned (especially at the arms), due to the very fast motion (indicated

also by the motion blur in the original views) and the imperfect synchroniza-

tion between Kinect sensors. Even under such imperfect synchronization con-

36

Figure 9: Frames from the six Lenia sequences and the corresponding tracked skeletons.

The sequences are encoded as “Lenia1”,..., “Lenia6”.

ditions, the method works efficiently. The proposed method, combining all

three layers, did not lose tracking with the used sequences (>16000frames),

and no human manual intervention was actually needed.

The diagrams in Figures 10, and 11 depict the percentage C% of non-

associated vertices of the human arms (see subsections 4.2 and 4.5) at the

output of Layer #1, along time. With the results in these diagrams, we

aim at partially demonstrating the tracking efficiency of Layer #1, as well

as the appropriateness of the selected threshold 15%. In Fig. 10(upper row),

where a left/right hand punching sequence is studied, the periodicity of the

motion is reflected in the percentage C%. Although C% increases during

the fast punching periods, it remains in low levels, below the threshold of

15%, and indeed the arms were well tracked. The diagram in the bottom

row of the Figure corresponds to 11
2

period of a “jumping jacks” actions. As

37

Figure 10: Apostolakis - The percentage of non associated vertices at the output of Layer

#1. Only during the very fast “jumping jacks” case, the threshold of 15% is reached. See

text for details.

38

Figure 11: Lenia3: Detection of Layer #1 tracking failure. The red and the dashed gray

circles indicate true and false positives, respectively.

can be seen, C% becomes larger than the threshold of 15% at a single time

instance, where indeed tracking was lost by Layer #1. In this case, Layer

#2 re-enforced the arm to the correct pose.

It was practically observed that the most challenging case for the pro-

posed method is the one where the user keeps or moves slowly her/his arm(s)

completely stacked on the body trunk. The diagram of Fig. 11 corresponds

to “Lenia” performing periodically an exercise. The periodicity is reflected

in the diagram. Between two exercise periods, she keeps (or moves slowly)

her whole arms stacked on her trunk, for short intervals. At these short in-

tervals, the percentage C% of non-associated vertices presents peaks/spikes,

higher than 15%, resulting into “alarms” and executions of Layer #2. These

“alarms” have been manually annotated as true or false positives. As can

be seen, approximately half of them are false. However, they are few, intro-

ducing only a minor computational overhead due to the execution of Layer

#2.

In total, considering all sequences, Layer #2 was executed in less than 3%

39

Table 1: Layer #1 tracking time (msec), for the male sequences

Dalexiad Apostolakis1 Apostolakis2 Alexandros All

Processed frames 2921 3272 2639 2216 11048

Average time (msec) 925 1075 1101 827 992

of the frames (452 in total). Layer #3 and ISA-based optimization, apart

from the body-pose initialization (subsection 4.5), was executed only four

times. Thus, Layer #3 proved to be useful mainly for overriding the need of

any human manual intervention.

Computational times: Given the implementation details of subsection

6.1, Table 1 provides the mean execution time of Layer #1, for the male

sequences. As can be seen, this computational time is slightly smaller than

1sec/frame. Although it does not result into real-time operation, it is signif-

icantly lower than the tracking time of similar approaches, which may range

from a few seconds [29, 43, 35] to several seconds or minutes [52, 46, 49, 36].

With respect to Layer #2, the mean operation time calculated over all Layer

#2 executions, is as low as 1.29sec/limb. Finally, the mean time for Layer #3

is 143sec/limb. Although Layer #3 is slow, its limited usage in our method

is not prohibitive.

6.2.2. Surface estimation

An example with respect to the iterative Laplacian deformation of the

model was given in Fig. 6. An additional example is given in Fig. 12. As can

be verified, the final output surface is watertight, smooth and noise-free, while

it contains most of the geometric details of the actual data, such as the clothes

garments. Several additional results can be found in the supplementary-

40

material document and videos, at http://vcl.iti.gr/performancecapture/.

Apart from the major advantage of producing dynamic mesh sequences,

the proposed model-based method has the advantage of being robust to self-

occlusions, as demonstrated in Fig. 13. This figure depicts the raw 3D data

for a specific pose, the corresponding “puppeted” model and the final de-

formed surface. Comparing the final output at Fig. 13(d) against the per-

frame model-free Poisson reconstruction (volume resolution 1283 voxels) at

Fig. 13(b), it can be verified that the proposed method can efficiently handle

self-occlusion and concavities, due to its model-based nature.

Finally, the method is more robust to “ghost limb” problems, compared

to per-frame model-free methods, as demonstrated in Fig. 14: Due to fast

motion and imperfect synchronization of the sensors, the separate input raw

data are not perfectly aligned, as shown in Fig. 14(a), especially at the fast

moving hands. This results into problematic reconstruction of any model-

free per-frame volumetric method, as the Poisson method in Fig. 14(b), in

contrast to the proposed one.

Computational times: Apart from the 3D data association algorithm,

which was implemented on the GPU, the other elements of iterative Laplacial

deformation algorithm run on a single CPU thread. The mean computation

time, calculated over all sequences’ frames, is 2.52 sec/frame, including the

calculation of the Laplacian and the 5 iterations of deformation. Although

higher than the corresponding time for tracking, the computation time for

our surface refinement step remains in quite low levels, compared to reported

times of relevant methods, e.g. in similar levels with [35] and an order of

magnitude lower than in [46, 49].

41

http://vcl.iti.gr/performancecapture/

Figure 12: From left to right: Raw data, “puppeted” and deformed model.

Figure 13: Lenia6: (a) Raw input 3D data; (b) Poisson surface reconstruction (volume

resolution 128 × 128 × 128 voxels); (c) “Puppeted” model; (d) Output surface of the

proposed model-based method. Check the concavity between the right arm and the head.

42

Figure 14: Apostolakis: (a) Raw, separate meshes encoded with different colors; (b)

Poisson reconstruction (128× 128× 128); (c) Proposed method.

6.2.3. Qualitative comparison vs model-free methods

We also compare against a VolumeDeform-like [28] model-free method

that dynamically fuses depth information from consecutive frames via ARAP

[66] deformation-based tracking and volumetric TSDF fusion [18]. Specifi-

cally, we compare against our multi-view implementation of VolumeDeform,

where (compared to [28]) i) the information from multiple RGB-D cameras

(four in our case) is used; ii) For dense depth correspondences finding, the

projective data association of [28], which according to our experiments does

not work for large motions, has been replaced with our 3D data associa-

tion of subsection 4.2; c) AKAZE texture features [67] are used, in place

of the patented SIFT features. According to our experimental results, al-

though a VolumeDeform-like framework produces high quality results in the

case of relatively slow motions and with the human being captured at close

43

Figure 15: Alexandros - From left-to-right: Reconstruction by (a) a VolumeDeform-like

[28] approach at frame t− 5 and (b) at frame t; (c) by the proposed model-based at frame

t. Large motion cannot be efficiently handled by a model-free method, even with the use

of RGB-based 2D features, as in [28].

distances, such a method is not as robust as a model-based one in challeng-

ing human motions, like those used in our experimental results. There are

cases where large motions cannot be handled well, probably due to the fact

that the generic ARAP deformation model is not restrictive enough for such

challenging motions. An example is given in Fig. 15. The accumulation of

new depth information after inaccurate tracking seems to produce destruc-

tive results, as shown in both Figs. 15 and 16. As a future work direction,

we would like to investigate how one could combine a model-based method,

such as the proposed one, with a VolumeDeform-like model-free method, to

take advantage of both.

44

Figure 16: Alexandros - From left-to-right: (a) Raw reconstruction; (b) VolumeDeform-like

reconstruction [28]; (c) proposed model-based reconstruction. The proposed model-based

reconstruction is less sensitive to tracking inaccuracies, compared to model-free methods.

45

Figure 17: Lenia4 - From left-to-right: (a) Raw textured data; (b) Model-based, color-

per-vertex; (c) Model-based with UV texture-mapping for the visible areas. Bottom row:

Zoom in the face.

46

6.2.4. Texture mapping

Apart from Fig. 7, textured reconstruction results are given in Fig. 17

and the supplementary-material document and videos. The textured results

demonstrate that the deformed surface is well aligned with the input 3D

data; otherwise, texture-misalignment artifacts would be observed.

At the left of Fig. 17, the raw textured reconstruction is depicted, with-

out the application of the input RGB pre-processing step (see subsection

5.2). The “background - on - foreground” artifact is visible: The white

background is mapped along the human’s silhouette. Additionally, the raw

reconstruction is noisy and of low-quality. On the other hand, the textured

(color-per-vertex) deformed model, shown at the middle, presents less arti-

facts. Additionally, the whole mesh is textured, despite the fact that some

mesh regions are invisible to all RGB views of the current frame. However,

the low resolution of the mesh results into a “blurred” output view. The

finally rendered view, using the proposed weighted UV-texture mapping ap-

proach, is given at the right. The texture is sharper and no significant visible

artifact exists.

6.3. Quantitative evaluation

6.3.1. Evaluation sequences with known Ground-Truth

To quantitatively evaluate the proposed methodology and compare it

against existing methods, multi-view depth sequences were generated by pro-

jecting an animated 3D model onto virtual depth cameras. Specifically, the

“Dalexiad”, “Lenia” and “Apostolakis” skinned models were animated using

the skeleton data tracked by our method for the “Apostolakis1”, “Apos-

totakis2” and “Dalexiad” sequences, respectively. The corresponding 3D

47

Figure 18: An example frame of the evaluation data. Left: Ground-truth mesh; Middle:

Depth maps generated by projecting onto the frontal and rear virtual cameras; Right: The

depth maps with AWGN and holes.

mesh sequences were projected onto four virtual depth cameras, with intrin-

sic and extrinsic parameters exactly the same with the actual Kinect sensors.

The generated sequences, with known geometry and skeleton Ground-Truth

(GT) are referred to as “VDalexiad”, “VLenia” and “VApostolakis” and can

be found at http://vcl.iti.gr/performancecapture/dataset2/, along with the

necessary details. An example is given in Figure 18. Either all four views or

only a subset of them is used in our experiments, as explained in the following

paragraph.

6.3.2. Experiments and quantitative results

The proposed method is evaluated with respect to both pose estimation

(skeleton tracking) and surface geometry accuracy. The method was executed

using i) all four depth views, ii) only the frontal and rear views, as well as the

2 views with iii) Additive White Gaussian Noise (AWGN) to the depth of

standard deviation equal to 20mm and iv) the same AWGN plus randomly

missing depth data (holes) of density 30%. An example is given at the right

of Fig. 18. We highlight that when applied with only two views, the raw

48

http://vcl.iti.gr/performancecapture/dataset2/

3D data are used as input (two views are not adequate to produce a well-

define watertight mesh via FT-based reconstruction) and the corresponding

thresholds for tracking-failure detection (subsection 4.5) are set to T = 25%

and T = 55% for the 1st and 2nd layer respectively, to avoid several “false

alarms”.

With respect to the skeleton tracking (pose estimation) results, the Root

Mean Squared (RMS) error against the joint positions GT is used as the eval-

uation metric. With respect to surface geometry estimation, the Metro tool

[68] (https://sourceforge.net/projects/vcg/) is used to calculate the RMS

distance between the estimated triangular mesh and the GT mesh, and vice

versa, which are denoted as E-GT and GT-E, respectively.

Pose tracking

The method is compared against the “offline” model-based pose tracking

method of [55], using the code provided by the authors at https://github.com/

aichim/bodies-ras-2015. This method takes as input a depth map sequence,

as well as a noisy skeleton sequence (normally obtained as the output of a

skeleton tracker, such as NITE or Kinect2 skeleton module) and simultane-

ously tracks the pose and estimates the human shape as a weighted average

of blendshapes. Since NITE or Kinect2 skeleton data are not available, the

GT skeleton is used itself as the noisy skeleton sequence input. As for the

weights of its various cost terms, the default parameters of their implemen-

tation are used, apart from the weight of the “skeleton feature constraints”

terms, which was set to 0.9 times the default value, since the use of the GT

skeleton favours significantly the method.

Figure 19 gives example comparative results, illustrating the per-frame

49

https://sourceforge.net/projects/vcg/
https://github.com/aichim/bodies-ras-2015
https://github.com/aichim/bodies-ras-2015

Figure 19: Per-frame RMS error for the “VDalexiad” sequence. Upper row: Results of the

proposed method (2 views with AWGN and missing data); Bottom row: Results of [55].

RMSE of the proposed method vs the method of [55]. Similar results for other

sequences are given in the supplementary material document. According to

our experimental evidence, [55] works quite robustly with our data. However,

it is not as accurate as the proposed method, although it is favoured by taking

as input (“skeleton feature constraints”) the GT skeleton data. The reason is

probably the fact that [55] does not use a custom model for a specific actor.

Instead, it aims to estimate the global shape of the user body, as the weighted

average of generic blendshapes and cannot handle well loose clothing. The

all-frames results for all sequences are summarized in Table 2, showing that

the accuracy of the proposed method significantly outperforms [55].

Surface estimation results

With respect to the reconstructed geometry, the method is compared

against a model-free approach, a multi-view implementation of VolumeDe-

form [28], as explained in paragraph 6.2.3. Additionally, since VolumeDeform

[28] is based on TSDF fusion [18], the results of a per-frame multi-view TSDF

approach are also given.

Since the tracking part of the model-free approach fails at the relatively

50

Table 2: Quantitative evaluation and comparative results: RMS Error (mm) of the tracked

joint positions with respect to the GT positions.

Method and input “VDalexiad” “VLenia” “VApostolakis”

Proposed, 4 views 8.45 9.39 3.95

Proposed, 2 views 9.67 11.09 5.31

” , ” + AWGN 11.83 13.22 9.87

” , ” + AWGN + Holes 12.09 14.77 11.03

Ichim & Tombari [55] 30.73 38.09 30.86

fast motion parts, producing destructive results (see paragraph 6.2.3), in or-

der to have a more fair comparison, the method’s output is “reset” whenever

tracking is lost (based on manually supervising the output at each frame).

This means that the output volume is reset to the TSDF function for the

specific frame and the tracking-fusion method continues normally to the next

frames.

The RMS Distances GT-E and E-GT for the first 450 frames of “VDalex-

iad” with 2 views are given in Fig. 20. The GT-E metric reflects partially

the completeness of the reconstructed surface, while E-GT reflects the ac-

curacy of the reconstructed part. As can be verified from the presented

diagrams, the GT-E metric for the VolumeDeform-like approach (blue line,

upper diagram) starts decreasing after each “reset”, until after some frames

the method loses tracking and the error starts increasing. The meshes il-

lustrated at the top of upper diagram, demonstrate that a) At frame 178

tracking has been lost; b) Thus, at frame 179 the reconstruction is “reset”;

c) After some frames (frame 210) the VolumeDeform mesh is more complete

51

Table 3: Quantitative evaluation and comparative results: RMS Distance (mm) of the

extracted triangular mesh vs the GT mesh (E-GT) and vice-versa (GT-E), as well as their

average (AVG).

“VDalexiad” “VApostolakis”

Input Method E-GT GT-E AVG E-GT GT-E AVG

Per-Frame TSDF 5.66 10.9 8.29 5.41 10.27 7.84

4 views VolDeform-like 6.10 8.42 7.62 5.52 8.28 6.90

Proposed 2.06 2.35 2.21 1.94 2.04 1.99

Per-Frame TSDF 4.61 20.4 12.1 4.55 19.82 12.19

2 views VolDeform-like 5.11 14.7 9.91 4.80 13.85 9.33

Proposed 2.75 2.96 2.85 2.52 2.71 2.61

2 views +

AWGN Proposed 4.02 4.61 4.31 3.72 4.19 3.95

2 views +

AWGN+Holes Proposed 4.16 5.37 4.77 4.03 4.84 4.43

Table 4: Quantitative evaluation of Layer #2 vs Layer #1 and impact of energy terms.

Tracking loss percentage

Input Mode1 Mode2 Mode3

“VDalexiad”, 2 views +AWGN+Holes 1.79% 0.52% 1.21%

than the corresponding TSDF mesh.

The corresponding per-frame results for the proposed method (with 2

depth views, with AWGN and missing data) are given in the diagram of

Fig. 21. Similar diagrams are given in the Supplementary material document.

Table 3 summarizes comparative results, which show that the model-free

approach cannot be as robust and accurate as the model-based one.

52

Figure 20: Per frame quantitative results for the VolumeDeform-like approach and the per-

frame TSDF, for “VDalexiad” with 2 views: RMS Distance (mm) of the (a) extracted

mesh vs GT (E-GT) and (b) vice-versa (GT-E). Some corresponding VolumeDeform-like

and per-frame TSDF meshes are also depicted. See text for details.

53

Figure 21: Per-frame quantitative results of the proposed method, for “VDalexiad” with

2 views, AWGN and holes: The RMS Distance (mm) of the extracted mesh vs GT

(E-GT) and vice-versa (GT-E), are given.

6.3.3. Evaluation of Layers and different energy terms

In this section, we are interested in a) demonstrating the efficiency of

Layer #2 vs Layer #1, and b) evaluating the importance of the various energy

terms of Layer #2. With the term “efficiency”, we refer to “robustness”

instead of “accuracy”, i.e. we are interested in the number of times tracking

is lost (note that the mission of Layer #2 is to reinforce mis-tracked joints

close to the correct positions).

Towards the above objectives, the algorithm was run in the following

modes. i) Mode1: The algorithm runs only Layer #1; ii) Mode2: Layer #1

runs to update the pose, then the pose parameters of the limbs are set to

those of the previous frame, and finally Layer #2 runs for each limb (and in

each frame); iii) Mode3: The same as Mode3, with the difference that only

the energy term E1(P) is used (see (4)), i.e. the weights are set w2 = w3 = 0

in (8). In all three modes, whenever tracking is lost, the algorithm continues

from the next frame and the pose parameters are set to the ground-truth of

that frame. Since the ground-truth is available, loss of tracking is considered

54

when the joint position error (for any joint) becomes >20cm.

The percentages of frames where tracking is lost in the three different

modes are given in Table 4. As can be verified, Layer #2 (Mode2) is more

robust than Layer #1 (Mode1), verifying our arguments of using Layer #2

on top of Layer #1, as Layer #1 is based on the establishment of 3D corre-

spondences, which may fail in the case of large motion.

Additionally, the results with Mode3 vs Mode2 demonstrate the neces-

sity of the energy terms E2 and E3 (see subsection 4.4.1). The energy E1

“attracts” the model towards the input 3D mesh. It is a model-to-input

point cloud “attractive” energy. However, as stated in subsection 4.4.1 an

energy term that accounts for the input point cloud-to-model distance is also

needed, to ensure that situations where e.g. the arms remain stacked on the

body, are avoided. This argument is verified by the results in Table 4.

6.4. Method’s limitations - Discussion

The proposed method shares the limitations of model-based approaches

in handling topological and scene changes. On the other hand, we believe

that the results of the proposed method, with respect to both tracking and

the final output (textured) surface are remarkable, especially when consider-

ing the low computation time needed, the relatively low number of the input

RGB-D sensors and the inherent sensors’ limitations. Still, the output is not

always free of artifacts and the visual quality is not perfect when compared to

methods such as [2], applied with expensive professional setups of hundreds

of perfectly synchronized cameras. For example, in our case, the imperfect

synchronization of the RGB streams (both with each other and with the

depth cameras) introduces texture artifacts during fast motions. One addi-

55

tional inherent limitation of the method, due to its model-based nature and

the imperfectly synchronized noisy input, is that the method may sometimes

not reconstruct faithfully thin structures, such as the hands (fist and fingers).

Due to similar reasons and the low-resolution of the user’s model, the facial

details are smoothed. Towards a solution of the latter, we expect that using

models of high resolution at the face will improve the reconstruction of facial

details.

7. Conclusions-Future Work

We have presented a novel end-to-end system that recovers the pose and

surface motion of an actor, fully automatically, using the input from a few

consumer-grade RGB-D sensors. The proposed method, focusing on speed

and robustness through a set of novel approaches, makes automatic process-

ing of large data sets feasible. The computational burden due to the high

dimensional search space is reduced by the introduction of a layered approach,

where each next layer is slower but executed only when needed, as well as

by the definition of sophisticated energy functions, fast computable on the

GPU. The experimental results on a large number of performances demon-

strate the efficiency of the proposed approach and its ability to produce quite

realistic FVV.

The limitations of the system have also been explained. Apart from

the exploitation of hardware- synchronized capturing equipment, we believe

that the use of mesh models of adaptive resolution can help towards the

further improvement of visual quality at semantically important regions, such

as the face or hands. Additionally, although the proposed method exceeds

56

significantly the speed performance of related methods, it operates “quick-

post”. Thus, we envision a real-time realization of the system, suitable for live

tele-immersion applications, via the full parallelization of faster optimization

methods versions, on high-performance GPUs.

Acknowledgement

This work was supported and received funding from the European Union

Horizon 2020 Framework Programme under Grant Agreement no. 761934

(Hyper360).

References

[1] A. Smolic, 3D Video and Free Viewpoint Video - From capture to dis-

play, Pattern Recognition 44 (9) (2011) 1958–1968.

[2] A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Calabrese,

H. Hoppe, A. Kirk, S. Sullivan, High-quality streamable free-viewpoint

video, ACM Trans. Graph. 34 (4).

[3] K. Mamou, T. B. Zaharia, F. J. Preteux, FAMC: the MPEG-4 standard

for animated mesh compression, in: Proc. ICIP, 2008.

[4] A. Doumanoglou, D. Alexiadis, D. Zarpalas, P. Daras, Towards real-time

and efficient compression of human time-varying-meshes, IEEE Trans.

Circuits Syst. Video Technol. 24.

[5] G. Vogiatzis, C. Hernandez, P. Torr, R. Cipolla, Multiview stereo via vol-

umetric graph-cuts and occlusion robust photo-consistency, IEEE Trans.

Pattern Anal Mach. Intell. 29 (12) (2007) 2241–2246.

57

[6] Y. Furukawa, J. Ponce, Carved visual hulls for image-based modeling,

Int. J. Comput. Vis. 81 (2009) 53–67.

[7] T. Matsuyama, X. Wu, T. Takai, T. Wada, Real-time dynamic 3D object

shape reconstruction and high-fidelity texture mapping for 3-d video,

IEEE Trans. Circuits Syst. Video Technol. 14.

[8] J.-S. Franco and E. Boyer, Efficient polyhedral modeling from silhou-

ettes, IEEE Trans. Pattern Anal Mach. Intell. 31 (3) (2009) 414 – 427.

[9] G. Haro, Shape from silhouette consensus, Pattern Recognition (9)

(2012) 3231–3244.

[10] K. Kutulakos, S. Seitz, A theory of shape by space carving, Int. J.

Comput. Vis. 38(3) (2000) 199 – 218.

[11] G. G. Slabaugh, W. B. Culbertson, T. Malzbender, M. R. Stevens, R. W.

Schafer, Methods for volumetric reconstruction of visual scenes, Int. J.

Comput. Vis. 57(3) (2004) 179 – 199.

[12] S. Prakasha, A. Robles-Kelly, A semi-supervised approach to space carv-

ing, Pattern Recognition 43 (2) (2010) 506–518.

[13] T. Kanade, P. Rander, P. J. Narayaran, Virtualized reality: Construct-

ing virtual worlds from real scenes, IEEE Multimedia 4 (1).

[14] C. L. Zitnick, S. B. K. M. Uyttendaele, S. Winder, R. Szeliski, High-

quality video view interpolation using a layered representation, ACM

Trans. Graph. 23 (3).

58

[15] R. Vasudevan, G. Kurillo, E. Lobaton, T. Bernardin, O. Kreylos, R. Ba-

jcsy, K. Nahrstedt, High quality visualization for geographically dis-

tributed 3D teleimmersive applications, IEEE Trans. Multimedia 13 (3).

[16] L. Kang, L. Wu, Y.-H. Yang, Robust multi-view L2 triangulation via op-

timal inlier selection and 3D structure refinement, Pattern Recognition

47 (9) (2014) 2974–2992.

[17] G. Turk, M. Levoy, Zippered polygon meshes from range images, in:

SIGGRAPH ’94, 1994, pp. 311–318.

[18] B. Curless, M. Levoy, A volumetric method for building complex models

from range images, in: SIGGRAPH ’96, 1996.

[19] H. Zhou, Y. Liu, Accurate integration of multi-view range images using

k-means clustering, Pattern Recognition 41 (1) (2008) 152–175.

[20] M. Kazhdan, M. Bolitho, H. Hoppe, Poisson surface reconstruction, in:

Proc. 4th Eurographics symp. on Geom. processing, 2006.

[21] M. Kazhdan, Reconstruction of solid models from oriented point sets,

in: Proc. 3rd Eurographics symp. on Geom.processing, 2005.

[22] N. Ahmed, C. Theobalt, C. Rossl, S. Thrun, H.-P. Seidel, Dense cor-

respondence finding for parametrization-free animation reconstruction

from video, in: IEEE CVPR, 2008.

[23] A.Dipanda, S.Woo, Towards a real-time 3D shape reconstruction using a

structured light system, Pattern Recognition 38 (10) (2005) 1632–1650.

59

[24] A. Maimone, H. Fuchs, Real-time volumetric 3D capture of room-sized

scenes for telepresence, in: IEEE 3DTV-Conf., 2012.

[25] D. Alexiadis, D. Zarpalas, P. Daras, Real-time, full 3-D reconstruction

of moving foreground objects from multiple consumer depth cameras,

IEEE Trans. Multimedia 15 (2013) 339–358.

[26] D. Alexiadis, A. Chatzitofis, N. Zioulis, O. Zoidi, G. Louizis, D. Zarpalas,

P. Daras, An integrated platform for live 3D human reconstruction and

motion capturing, IEEE Trans. Circuits Syst. Video Technol.

[27] R. Newcombe, D. Fox, S. Seitz, DynamicFusion: Reconstruction and

tracking of non-rigid scenes in real-time, in: CVPR, 2015.

[28] M. Innmann, M. Zollhöfer, M. Nießner, C. Theobalt, M. Stam-

minger, Volumedeform: Real-time volumetric non-rigid reconstruction,

in: CVPR, 2016.

[29] J. Carranza, C. Theobalt, M. A. Magnor, H.-P. Seidel, Free-viewpoint

video of human actors, ACM Trans. Graph. 22 (3).

[30] G. Pons-Moll, B. Rosenhahn, Visual Analysis of Humans-Looking at

People, Ch. 9 Model-Based Pose Estimation, Springer, 2011.

[31] C. Bregler, J. Malik, K. Pullen, Twist based acquisition and tracking

of animal and human kinematics, Int. J. Comput. Vis. 56 (3) (2004)

179–194.

[32] R. M. Murray, Z. Li, S. S. Sastry, Mathematical Introduction to Robotic

Manipulation, CRC Press, 1994.

60

[33] T. Brox, B. Rosenhahn, J. Gall, D. Cremers, Combined region and

motion-based 3d tracking of rigid and articulated objects, IEEE Trans.

Pattern Anal. Mach. Intell. 32 (2010) 402–415.

[34] S. Corazza, L. Muendermann, E. Gambaretto, G. Ferrigno, T. P. Andri-

acchi, Markerless motion capture through visual hull, articulated ICP

and subject specific model generation, Int. J. Comput. Vis. 87 (1) (2010)

156–169.

[35] J. Gall, C. Stoll, E. de Aguiar, C. Theobalt, B. Rosenhahn, H. P. Seidel,

Motion capture using joint skeleton tracking and surface estimation, in:

IEEE CVPR, 2009.

[36] J. Gall, B. Rosenhahn, T. Brox, H.-P. Seidel, Optimization and filtering

for human motion capture: A multi-layer framework, Int. J. Comput.

Vis. 87 (1) (2010) 75–92.

[37] J. Gall, B. Rosenhahn, H. Seidel, Clustered stochastic optimization for

object recognition and pose estimation, DAGM. Lecture Notes in Com-

puter Science 4713 (2007) 32–41.

[38] J. Gall, J. Potthoff, C. Schnorr, B. Rosenhahn, H. Seidel, Interacting

and annealing particle filters:mathematics and a recipe for applications,

J. Math. Imaging Vis. 28 (2007) 1–18.

[39] P. Kaliamoorthi, R. Kakarala, Parametric annealing: A stochastic

search method for human pose tracking, Pattern Recognition 46 (5)

(2013) 1501–1510.

61

[40] H.-D. Yang, S.-W. Lee, Reconstruction of 3D human body pose from

stereo image sequences based on top-down learning, Pattern Recognition

40 (11) (2007) 3120–3131.

[41] X. Zhao, Y. Liu, Generative tracking of 3d human motion by hierarchical

annealed genetic algorithm, Pattern Recognition 41 (8) (2008) 2470–

2483.

[42] J. Darby, B. Li, N. Costen, Tracking human pose with multiple activity

models, Pattern Recognition 43 (9) (2010) 3042–3058.

[43] D. Vlasic, I. Baran, W. Matusik, J. Popovic, Articulated mesh animation

from multi-view silhouettes, ACM Trans. Graph.

[44] O. Sorkine, Differential representations for mesh processing, Computer

Graphics Forum 25 (4) (2006) 789–807.

[45] M. Botsch, O. Sorkine, On linear variational surface deformation meth-

ods, IEEE Trans. Vis. Comput. Graphics 14.

[46] E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmedand, H.-P. Seidel,

S. Thrun, Performance capture from sparse multi-view video, ACM

Trans. Graph. 27 (3).

[47] M. Straka, S. Hauswiesner, M. Ruether, H. Bischof, Rapid Skin: Es-

timating the 3D human pose and shape in real-time, in: 2nd Interna-

tional Conference on 3D Imaging, Modeling, Processing, Visualization

& Transmission (3DimPVT), 2012.

62

[48] M. Straka, S. Hauswiesner, M. Ruether, H. Bischof, Simultaneous shape

and pose adaption of articulated models using linear optimization, in:

European Conference on Computer Vision (ECCV), 2012.

[49] C. Wu, C. Stoll, L. Valgaerts, C. Theobalt, On-set performance capture

of multiple actors with a stereo camera, ACM Trans. Graph. 32.

[50] M. Zollhöfer, M. Nießner, S. Izad, C. Rhemann, C. Zach, M. Fisher,

C. Wu, A. Fitzgibbon, C. Loop, C. Theobalt, M. Stamminger, Real-

time non-rigid reconstruction using an RGB-D camera, ACM Trans.

Graph. (2014) 33 (4).

[51] G. Ye, Y. Liu, N. Hasler, X. Ji, Q. Dai, C. Theobalt, Performance cap-

ture of interacting characters with handheld kinects, in: ECCV, 2012.

[52] M. Dou, J.-M. Frahm, H. Fuchs, Scanning and tracking dynamic objects

with commodity depth cameras, in: IEEE Int. Symp. on Mixed and

Augmented Reality (ISMAR), 2013.

[53] M. Ye, R. Yang, Real-time simultaneous pose and shape estimation for

articulated objects using a single depth camera, in: IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2014.

[54] M. Ye, Y. Shen, C. Du, Z. Pan, R. Yang, Real-time simultaneous pose

and shape estimation for articulated objects using a single depth camera,

IEEE Trans. Pattern Anal Mach. Intell. 38 (08) (2016) 1517–1532.

[55] A. E. Ichim, F. Tombari, Semantic parametric body shape estimation

from noisy depth sequences, Robotics and Autonomous Systems 75

(2016) 539 – 549.

63

[56] I. Baran, J. Popovic, Automatic rigging and animation of 3d characters,

ACM Trans. Graph. 26 (3).

[57] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.

Davison, P. K. andJamie Shotton, S. Hodges, A. W. Fitzgibbon, Kinect-

Fusion: Real-time dense surface mapping and tracking, in: Proc. 10th

IEEE ISMAR, 2011, pp. 127–136.

[58] S. Grassia, Practical parameterization of rotations using the exponential

map, J. Graph. Tools 3 (1998) 29–48.

[59] G. Pons-Moll, B. Rosenhahn, Ball joints for marker-less human motion

capture, in: IEEE Workshop Applications of Comp. Vision, 2009.

[60] C. Stoll, Z. Karni, C. Roessl, H. Yamauchi, H.-P. Seidel, Template de-

formation for point cloud fitting, in: IEEE VGTC conference on Point-

Based Graphics, Eurographics Association, 2006, pp. 27–35.

[61] D. Marquardt, An algorithm for least-squares estimation of nonlinear

parameters, SIAM J. Appl. Math. 11.

[62] M. Lourakis, levmar: Levenberg-marquardt nonlinear least squares al-

gorithms in C/C++, accessed: Mar. 2016 (July 2004).

URL http://www.ics.forth.gr/~lourakis/levmar/

[63] D. Coeurjolly, A. Montanvert, Optimal separable algorithms to compute

the reverse euclidean distance transformation and discrete medial axis

in arbitrary dimension, IEEE Trans. Pattern Anal Mach. Intell. 29 (3)

(2007) 437–448.

64

http://www.ics.forth.gr/~lourakis/levmar/
http://www.ics.forth.gr/~lourakis/levmar/
http://www.ics.forth.gr/~lourakis/levmar/

[64] D. Alexiadis, D. Zarpalas, P. Daras, Real-time, realistic full-body 3D

reconstruction and texture mapping from multiple kinects, in: Proc.

IEEE IVMSP, 2013.

[65] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Nu-

merical Recipes in C: The Art of Scientific Computing, 2nd Edition,

Cambridge University Press, 1988-1992.

[66] O. Sorkine, M. Alexa, As-rigid-as-possible surface modeling, Eurograph-

ics Symposium on Geometry Processing.

[67] P. F. Alcantarilla, J. Nuevo, A. Bartoli, Fast explicit diffusion for accel-

erated features in nonlinear scale spaces, in: In British Machine Vision

Conference (BMVC), 2013.

[68] P. Cignoni, C. Rocchini, R. Scopigno, Metro: measuring error on sim-

plified surfaces, Computer Graphics Forum 17 (2) (1998) 167–174.

65

	Introduction
	Related work

	Preliminaries and method's overview
	Capturing of multi-view RGB-D videos and TVM reconstruction
	Performance capture overview

	Off-line human template modelling
	Human model reconstruction & automatic rigging
	Human pose parameterisation

	Skeleton-based pose estimation
	A three-layers approach
	A 3D data association approach
	Layer #1: Correspondence-based pose estimation
	Layers #2 and #3
	Definition of the energy function
	Layer #2: Downhill simplex optimization
	Layer #3: Global ISA-based optimization

	Additional issues

	Shape refinement and texture mapping
	Laplacian deformation within an iterative framework
	Texture mapping

	Experimental Results
	Implementation details and processing hardware
	Qualitative evaluation
	Tracking
	Surface estimation
	Qualitative comparison vs model-free methods
	Texture mapping

	Quantitative evaluation
	Evaluation sequences with known Ground-Truth
	Experiments and quantitative results
	Evaluation of Layers and different energy terms

	Method's limitations - Discussion

	Conclusions-Future Work

