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ABSTRACT

Free-viewpoint capture technologies have recently started demonstrating impressive results. Being able to capture
human performances in full 3D is a very promising technology for a variety of applications. However, the setup
of the capturing infrastructure is usually expensive and requires trained personnel. In this work we focus on one
practical aspect of setting up a free-viewpoint capturing system, the spatial alignment of the sensors. Our work aims
at simplifying the external calibration process that typically requires significant human intervention and technical
knowledge. Our method uses an easy to assemble structure and unlike similar works, does not rely on markers or
features. Instead, we exploit the a-priori knowledge of the structure’s geometry to establish correspondences for
the little-overlapping viewpoints typically found in free-viewpoint capture setups. These establish an initial sparse
alignment that is then densely optimized. At the same time, our pipeline improves the robustness to assembly
errors, allowing for non-technical users to calibrate multi-sensor setups. Our results showcase the feasibility of our

approach that can make the tedious calibration process easier, and less error-prone.
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1 INTRODUCTION

Capturing the complete appearance of real people and
general scenes has matured and attracted much interest
lately. Be it either offline for high quality free view-
point video [Ye13] and streamable 3D content [Col15],
or in real-time for tele-presence [Escl6, Becl3] and
tele-immersion [Ziol6] scenarios, it can open up the
potential for new immersive experiences in a variety of
applications like gaming [Zio16] or remote interactions
[Esc16, Bec13].

The backbone of these new experiences is the acqui-
sition of a full 3D representation of general scenes or
performances. While a variety of single sensor meth-
ods exist, some focusing only on geometry informa-
tion [New15, Innl16, Zol14], and others also produc-
ing fully textured outputs [Guol7, Caol7], truly im-
mersive experiences can only be facilitated by complete
360° captures via multi-sensor systems. These systems
present with both high-quality but expensive solutions
[Doul6, Doul7], as well as lower cost ones [Alel7].
Either option utilizes color and depth (RGB-D) infor-
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mation acquired from multiple viewpoints that are spa-
tially aligned, or otherwise externally calibrated, to a
common coordinate system. Therefore, this external
calibration step is a necessity for all performance cap-
ture methods alike.

However, multi-sensor calibration is typically a com-
plex procedure that requires trained users, a require-
ment that inhibits the applicability of this technology
to the consumer public. The complexity arises from
the fact that most methods require capturing a calibra-
tion object in numerous poses into the captured area
[Becl15, Becl7, Furl3, Forl7], and in some cases this
is also performed in a sensor pairwise manner [Hei97].
Some recent methods utilize a static calibration struc-
ture to spatially align all viewpoints. In [Coll5], cali-
brating a large amount of cameras is accomplished by
using a very complex octagonal tower. There also exist
lower complexity structures for setups with less sensors
[Kow15, Alel7]. These structure-based multi-sensor
calibration methods are more suitable for non-technical
users as they require minimal human intervention apart
from assembling the structure.

In this work, we lift the requirement of using markers or
patterns when utilizing a known structure for calibrat-
ing multiple RGB-D sensors. Our main contribution
is a correspondence identification step that requires no
feature extraction or marker identification. We exploit
only the structure’s geometrical semantics and segment
input depth maps into labeled regions. Therefore, lift-
ing the requirement of markers or patterns, our pro-



posed method does not require color input and operates
on a markerless basis.

In the remainder of the paper we review related work in
Section 2 and present our method in detail in Section 3.
Then, in Section 4 a detailed evaluation follows, with a
concluding discussion presented in Section 5.

2 RELATED WORK

Precise spatial alignment of multi-sensor 3D capturing
systems is essential for the creation of realistic 3D hu-
man models and assets. Preliminary methods relied
only on distributed RGB cameras and were based on the
simultaneous capture of a planar rigid printed checker-
board with known dimensions from at least 2 cameras
[Hei97, Zha0O0]. This technique, which is typically used
for stereo calibration, is the de facto method to esti-
mate the intrinsics parameters along with the relative
pose between neighboring cameras. Despite producing
high accuracy results, it requires great effort from the
user because the printed checkerboard must be slowly
moved and (re-)positioned inside the capturing area. In
addition, it also requires knowledge of the technical de-
tails behind the calibration process to avoid hard-to-
detect checkerboard poses and partial views. Further-
more, it requires hardware synchronized sensors or oth-
erwise, a precise synchronization step for all cameras
should precede. Furthermore, the solution is anchored
on a selected reference camera as it is not possible to
transform all viewpoints to a common global coordinate
system. In systems composed of more than 2 sensors,
a potential erroneous estimation could be accumulated
during the aggregation of relative transformations.

To address the aforementioned limitation, state-of-the-
art systems based on the same checkerboard pattern,
have incorporated additional optical tracking systems
[Bec15, Becl17] or IMU sensors [Furl3]. These alterna-
tive methods rely heavily on the tracking systems which
are mainly responsible to track the checkerboard’s loca-
tion and define the global coordinate system. Nonethe-
less, tracking systems require special technical knowl-
edge to mount and operate. Moreover, capturing of
the moving checkerboard still requires human interven-
tion, which potentially introduces errors. Further, tem-
poral alignment of the sensors is also needed to syn-
chronously capture the input images. Another asso-
ciated challenge is the motion blur introduced by the
moving checkerboard that can deteriorate the calibra-
tion’s overall performance.

Specifically for RGB-D sensors, some methods ex-
ploit the availability of depth measurements as well
as the color information to detect a set of 2D features
[Low0O4, Bay08, Rubll, Alcl1] within the capturing
area, which can then be converted to 3D points using
the depth data. When matched between neighboring
viewpoints 3D-to-3D correspondences are established

[Doul4], that are used to estimate the relative pose be-
tween the sensors. Several works have attempted to en-
rich the capturing area with features or markers placed
on a structure to establish robust 3D correspondences
[Alel17, Kowl5, Kail2]. Using a common structure of-
fers the advantage of avoiding pairwise calibration and
instead, spatially aligns all sensors onto the same coor-
dinate system directly.

However, establishing only sparse correspondences
based on detected 2D features or markers is frequently
prone to errors due to measurement inaccuracies. To
overcome this, dense alignment methods are used that
exploit the overlap between viewpoints. Albeit, these
still require a rough initial alignment that is given
by sparse feature correspondences. Dense methods
are usually developed using a variant of the Itera-
tive Closest Point (ICP) algorithm [Kowl15, KinO5],
graph-based optimization [Ihr04] or bundle adjustment
[Vanl7]. A comprehensive review of refinement
methods can be found in [Pom13]. In a similar fashion,
other approaches densely estimate the viewpoints of
spatially distributed sensors by initially detecting lines
and planes [Denl14, Owel5, Xul7]. This is succeeded
by a post-refinement step to find a globally optimal
solution. More recently, a color-based object was
utilized and tracked to simultaneously align multiple
RGB-D sensors both in the spatial and temporal
domain [Forl7]. It still remains though, a complex
process that requires a user to move the object within
the scene.

While machine learning algorithms are now abundantly
used in various computer vision tasks due to their high
performance, they have found little use in calibration
tasks. They have been mostly used in localization tasks
utilizing decision trees on pure color [Shol13] or RGB-
D [Bral4, Bral6] information. Similarly, deep learn-
ing variants of these methods have emerged [Kenl5,
Zaml6, Mell7, Nakl7, Poil6]. Despite having dis-
played promising initial results, their accuracy and ro-
bustness have not been put to the test of multi-sensor
alignment in order to demonstrate their applicability to
this specific problem.

3 MARKERLESS STRUCTURE-
BASED SPATIAL ALIGNMENT

Our goal is to perform a multi-sensor extrinsic calibra-
tion aiming to spatially align the generated point clouds
into a common, global, coordinate system. We rely on
an easy to deploy calibration structure that is assem-
bled by four equally sized boxes, and more specifically,
low-cost commercially available packaging boxes. This
approach requires minimal human intervention and is
inspired by [Alel7]. Unlike the structure assembled in
[Ale17] though, we opt for a simpler assembly process
where the boxes are positioned on top of each other,
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Figure 1: Left: The symmetric calibration structure
used in [Alel7]. Middle: Our asymmetric structure
with its corresponding semantic labels per face (Right).
Instead of aligning the boxes on top of each other us-

ing their diagonals, they are now snapping on their top
sides’ corners, following a 90° rotational pattern.
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while using their side corners instead of their diagonals
to snap each box with the one placed on top of it. Fig. 1
showcases the structure of [Ale17], as well as our mod-
ified assembly. Another advantage associated to this
modification is that the structure is now fully asymmet-
ric, compared to the previous symmetric (i.e. mirrored)
assembly. The calibration structure serves as a spatial
anchor as all sensor viewpoints’ relative pose to its co-
ordinate system (depicted in Fig. 1) will be estimated.
This simplifies the calibration process as it removes the
necessity of complex pairwise alignments.

Our approach differs from similar approaches that uti-
lize boxes [Kow15] or structures [Alel7], as it does not
rely on feature extraction or marker detection. Instead,
our correspondence estimation is only reliant on the
structure’s geometry, as observed by the depth sensor.
We exploit the a-priori knowledge related to the struc-
ture’s shape by training a Fully Convolutional Network
(FCN) [Lon15] to identify the structure’s boxes’ sides.
In this way, we perform an initial viewpoint estimation
which we then densely refine via a global optimization.

3.1 Semantic Correspondences

Given the now asymmetric geometry, we assign a
unique label to each distinct box side and train an FCN
for a dense classification task that aims to identify each
side in an input depth image. The updated structure’s
asymmetry allows for easier learning of unique feature
descriptors for each viewing direction and is free of
any ambiguities that would arise from a symmetric
one. The multi-view spatial alignment process can
potentially involve a very wide variety of different
captured depth data as it involves the full 6 DOF of
both the structure and sensor. Training an FCN means
we don’t have to rely on hand-crafted features or
a customized methodology. Training a network for
the task of labeling each side, given the numerous
possible poses that a sensor can observe the structure,
requires a very large dataset. We circumvent the
difficult task of manually labeling such a large dataset

D8 : 90° ¥
T 0.68m -\\\ (430 10
» 210.28 m i
4

2m /0
m._ 450
e /

e
ey /
¢ °
4 25m (l\lon

Figure 2: Pose generation process. The range limits of
each parameter in equation (1) used to sample/generate
the poses are visually presented, showcasing the possi-
ble sensor positions around the calibration structure.
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by synthesizing it. This is accomplished by building
a virtual model replica of the calibration structure
using the boxes’ known dimensions. Nonetheless,
creating such a dataset requires a very large amount of
storage. Therefore, we chose to simply generate the
depth images and labels on-the-fly, using the graphics
pipeline to render our data and simulate realistic depth
data capturing conditions.

Pose Generation: The structure’s coordinate system,
and therefore the global coordinate system that all sen-
sors’ data will be transformed to, resides on the virtual
structure’s origin as shown in Fig. 1. Each sensor i’th
pose [R|t]' € SE® with respect to the structure, con-
sists of a rotation R’ € SO? and translation t' € R3. To
generate a large amount of poses we sample positions
t = (ti,2},1!) in a circular pattern around the structure
looking towards its origin. We use a cylindrical coor-
dinates sampling (p, 6,z) for the position of each sam-
pled viewpoint, omitting the superscripts i for the re-
mainder of this section. A free viewpoint capture setup
requires its sensors to look inwards towards its captur-
ing space’s center. In our case, this resides on the struc-
ture’s center position, i.e. the global coordinate frame’s
origin. Therefore, the poses’ rotations R are set to look
at (0,0,0). In practice, though, one cannot achieve such
an accurate positioning of the sensor. To compensate
for this, we compose additional rotational perturbations
px and p, to each sampled viewpoint, to further aug-
ment the variety of sampled poses and capture realistic
positioning conditions. These are rotations around the
x and y axis respectively, which essentially represent
the sensor’s pan(right/left) and tilt(up/down) rotations
as shown in Fig. 2. For each of these variables we
generate discrete samples from a uniform distribution
Ul(a,b,c) at the interval |a, b] in steps of ¢ units:

6 < U(or—10°,a+10°,2.5°),

2~ U(0.28m,0.68m,0.02m),
p ~ U(2.0m,2.5m,0.02m), (1

px ~ U(—10°,10°,2.5°),

py ~ U(—3°,3°,3°).



where o = {45°,135°,225°315°}. The bounds for
range p and height z, confine the viewpoint within the
limits of fully capturing a human subject given a rea-
sonable vertical field of view. In addition, the sensor
originated rotations p, and p,, are set in a range of val-
ues that are reasonable to position the captured subject
close to the sensor’s center. Regarding the distribution
of the viewpoints around the structure as offered by the
cylindrical angle 0, we restrict it around specific 90°
intervals, thus focusing only on the case of 4 viewpoint
capture. The 4 sensor case is the most optimal solu-
tion in terms of cost against quality when aiming for
full 360° coverage with the least amount of sensors. By
considering an approximate positioning of the sensors
around the structure, offered by the selected range of
0 angles, we add a restriction in order to decrease the
number of input poses and increase the robustness of
our predictions. This restriction is a structure place-
ment guideline: "fo have the sides of all boxes looking
in between of two sensors", as illustrated in Fig. 2. The
same figure also presents the aforementioned sampling
spaces, as well as the relative to the structure position-
ing of the sensor poses that are generated for creating
the training data. We generate a total of N = 530712
poses [R]t].
Data Generation: The on-the-fly data generation pro-
cess takes as input the 3D virtual model which is de-
composed into parts, each part being one side of each
box comprising the structure. We generate N samples
using the poses [R|t] to position the virtual camera and
render the model, acquiring the generated z-buffer as
the input data depth map D(u,v). Each part is also as-
signed a unique label for a total of 25 distinct labels, six
sides for each box plus the background. Each labeled
part is rendered with a unique color. By also acquiring
the swapped color buffer we obtain the ground truth per
pixel labeled image L(u,v). To simulate more realis-
tic input, we add noise on the rendered depth map ran-
domly choosing the noise function for each sample. We
use a noise model better suited for disparity based depth
maps (e.g. structured light) as presented in [Bar13] as
well as a random noise simulation scaled with the depth
value of each pixel:
—uU(0,1)%)

D, (u,v) =sign(U(—1,1))*D(u,v)*xoy*x(1—e— 2 )

(@)
where D, and D are the noisy and rendered depth
maps respectively, U denote random uniform distribu-
tions, and o, is a depth scaling factor. In addition,
we composite the rendered model onto random back-
grounds. These are selected uniformly from various
cases: i) white noise, ii) Gaussian noise, (both scaled
appropriately to produce values within the expected
depth ranges), iii) 159 backgrounds drawn from the
database of [Was16] (selected one per 30 frames) and
iv) 326 backgrounds drawn from in-house recordings

with actual people being captured. Therefore, we aug-
ment our online generated training corpus using a mix
of noisy and real backgrounds as well as two distinct
depth noise models, with some examples presented in
the supplementary material. It should be noted that we
also generate a smaller test dataset from sensor posi-
tions not included in the train data, as a result of choos-
ing different starting values and step units in the same
ranges as those presented in (1).

Architecture: The detailed deep Fully Convolutional
Network (FCN) configuration and architecture used is
presented in Figure 3 (Left). It comprises of a multi-
layer convolution and a symmetric deconvolution net-
work. The first part learns to extract various features
from the input depth map, while the second learns to
produce the semantic segmentation of the input into its
distinct labels, i.e. box sides, out of the extracted fea-
tures. The final densely predicted labels are computed
out of a probability feature vector of size equal to the
amount of labels (25) for each pixel, which constitutes
the output of our network that is estimated via a soft-
max function. The resulting prediction map matches
the resolution of the input depth map, as while the con-
volution part reduces the size of the activations, the fol-
lowing deconvolution part enlarges them back to their
original size.

Correspondence Establishment: After segmenting
the depth map into regions that correspond to each
distinct box’s sides, we can use this semantic informa-
tion to establish correspondences between the acquired
depth map and the virtual structure model. Initially, we
discard the regions labeled as background or the box
sides that are facing upwards/downwards. Then, for
each remaining segmented region L, we back-project
all depth map pixels to 3D (in the sensor’s local coordi-
nate system), and extract their median 3D position my.
Small area labeled regions are heuristically discarded
when containing less than n elements. The 3D point
m; corresponds to the labeled box’s rectangular side
center point and therefore, we can establish a corre-
spondence in 3D with the known point’s coordinates
in the asymmetric structure’s virtual model. This 3D
correspondence establishment is illustrated in Fig.
3 (Right), where the matching of the corresponding
median points between two real views and the virtual
structure model is presented.

3.2 Global Spatial Alignment

Given the 3D-to-3D correspondences as an input, we
determine an initial alignment of all viewpoints by us-
ing the generalized Procrustes analysis [Ken05]. For
each viewpoint s we obtain its pose P; with respect to
the global coordinate system that is originated in the
structure’s virtual model. However, this initial view-
point estimation may often present slight errors as a re-
sult of the sparseness or inaccuracy of correspondences
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Figure 3: Left: The architecture of our semantic segmentation FCN. Having a single depth image as an input,
it segments and densely classifies it in order to identify the per-pixel labels of the observed calibration structure.
Right: Correspondences are established by extracting the 3D medians of the detected labeled regions. These
3D points are then matched against the midpoints of their corresponding virtual structure’s box sides to establish

3D-to-3D correspondences. (best viewed in color)

used. This will lead to a visible drop of quality for the
produced / captured content. Another reason for inac-
curate correspondences is the possibility of an imper-
fect assembling of the structure, which is more typical
when using markers (misplacement) or features (impre-
cise localization). Thereby, a second step is needed
to refine the initial viewpoint estimations by densely
aligning the point clouds of adjacent sensors. Instead of
a simple pairwise optimization, we solve for an optimal
global solution using all viewpoints simultaneously. We
use a graph-based optimization where the spatial rela-
tionships between the sensor set S are represented by a
graph G = (P,E).

The nodes of the graph are the estimated poses P, € SE?
of each sensor s in the global (virtual structure) coordi-
nate system. The edges E;; represent constraints in the
poses between the nodes i and j in the form of obser-
vations of j from node i. These observations are es-
tablished as correspondences Pjv; <+ P;v; with v € R3
being a point in the sensor’s local coordinate system.
These correspondences are acquired by nearest neigh-
bor searches between viewpoints i and j after trans-
formed to the common coordinate system. Each corre-
spondence / edge is encoded as point-to-plane distance:

Eij=[|(P;7'Pjv;—vi) 2 3)

where n; € R3 is the normal vector of v;. As depth maps
can be noisy around edges, in order to reduce the ef-
fect of outliers, we only establish 3D point correspon-
dences within a radius ., sy between adjacent sensors,
with their adjacency estimated by their initial sparse
spatial alignment. The graph-based optimization uses
the Levenberg-Marquardt method [Mar63] to solve the
underlying system, with an iterative scheme. We per-
form a fixed number of iterations while also dropping
Teuroff after a set number of iterations. Solving for all
poses simultaneously instead of in a pairwise fashion,
we get a globally optimum solution. The refined poses
of the viewpoints effectively maximize the overlap be-
tween neighboring point clouds. Overall, this dense re-

finement step rectifies any human-related or systematic
errors and improves the quality of the spatial alignment.

4 RESULTS AND DISCUSSION

We evaluate our multi-sensor external calibration
method under a variety of 4-sensor setups all focused
on free viewpoint capture of human performances.
Consequently, the sensors are all looking inwards,
towards the center of the capturing area.

Implementation details: Our experiments are based
on the Microsoft Kinect 2.0, a Time-of-Flight RGB-D
sensor. Our semantic labeling FCN was trained on a
NVIDIA Titan X using the Caffe framework [Jial4].
We rendered the generated data using the average
Kinect intrinsics parameters (512 x 424 resolution, a
366.66 focal length baseline and placed the principal
point at the depth maps center) to create the projection
matrix and trained the FCN on the full resolution
images. We train our network for 100k iterations
with an initial learning and batch size of 0.001 and
5 respectively. We increase the batch size to 15 after
50k iterations and linearly decay the learning rate with
a gamma of 0.9 every 10k and 15k iterations when
the batch size is 5 and 15 respectively. We use the
ADAM optimizer [Kin14] with its standard momentum
and epsilon parameters. The threshold for discarding
labeled regions n,;,,; was heuristically selected to be
2000 pixels to discard potential erroneous estimations
predicted by the FCN. After training is over, our model
achieves a mean Intersection over Union (mloU)
of 86.23% on the generated test dataset. For the
refinement step we use the g20 framework [Kuml1]
for 10 iterations and initially set r¢yop to 0.05m and
drop it to 0.01m after 5 iterations.

Data acquisition: As the data acquisition requires cap-
turing a static structure object, the process is free of
temporal synchronization or motion blur issues. We ex-
ploit this to aggregate frame information within a time
window of N frames. Thus, we obtain a median depth
map out of 30 frames capturing the static structure. The



Figure 4: Example calibration views as captured by
the color sensor. The SIFT correspondences are also
shown, as well as the marker placement for [Ale17] and
[Kow15]. SIFT features are matched against the tex-
ture applied to the virtual calibration structure model.
LiveScan3D marker detections are highlighted on the
color images.

median depth map cancels out noise and has less holes,
while also being robust to any interference between the
sensors. Further, the acquisition process requires mini-
mal human intervention which is limited to assembling
the structure near the center of the capturing area, so as
to be visible from all sensors simultaneously.

Metric: We measure the accuracy of the registration us-
ing the Rooted Mean Squared Euclidean (RMSE) dis-
tance between the closest points of overlapping areas
of adjacent point-clouds (back-projected from the cor-
responding depth maps). Given that we seek to mea-
sure how well the overlapping surfaces fit and since
the viewpoints’ overlap is limited as a result of their
90¢ intervals placement around the capturing space, we
only use those correspondences with distances less than
0.02m for each viewpoint pair. We calculate the RMSE
error across all adjacent viewpoint pairs for each sensor
and average the overall error.

4.1 Evaluation

We compare our method against the structure-based
method [Alel7] and "LiveScan3D" [Kow15] that is
similarly reliant on attaching markers on rigid surfaces
(i.e. boxes). For [Alel7] we utilize the publicly of-
fered markers offered that we attached on the structure
following the available instructions. This method only
performs spatial alignment based on sparse correspon-
dences. For extracting the SIFT [Low04] correspon-
dences we opt for a brute force matching strategy, in-
stead of approximate versions as we are not bounded
by timing constraints. The marker placement and fea-
ture matching process is shown in Fig. 4.

For [Kow15], we use the offered set of markers which
are used to obtain initial pose estimates. These are
then refined by a dense optimization step using pairwise

ICP. The "LiveScan3D" markers were also attached on
the same calibration structure to allow for simultaneous
comparison between all methods as shown in Fig. 4.
Markers’ positions in the structure’s (i.e. global) coor-
dinate system were calculated as they are required as in-
put by [Kow15] to drive the initial registration. For box
assemblies that are not perpendicular (e.g. the structure
of [Ale17]), this would require some effort by the users
to calculate the markers’ positions using trigonometry.

Both [Kow15] and our method utilize a post dense re-
finement step to improve the spatial alignment results,
while [Ale17] does not. As aresult, we also offer results
for [Alel7] by adding a graph-based dense refinement
step after the initial alignment obtained by the sparse
feature correspondences. We refer to the sparse version
as "Sparse-Only" and to the extended post-refinement
version as "Sparse+Graph".

We conduct experiments for a variety of setups in order
to evaluate all methods in terms of accuracy and robust-
ness. We even purposefully include defective assem-
blies of the calibration structure to assess each method’s
efficacy with respect to mis-assemblies (namely f, g
and 4 in Table 1). Given that our markerless correspon-
dence estimation focuses on a particular capturing setup
and was trained on these poses only, we use an approx-
imate 4 sensor placement at 90° intervals around a cir-
cle. It should be noted that markers for [Alel7] and
[Kow15] were placed on the structure without overlap-
ping as seen in Fig. 4.

Table 1 presents quantitative results of our experiments
while also offering each setup’s approximate sensor
placements. Fig. 6 displays the qualitative results for
the same setups. Even though experiments (a) and
(b) included sensor poses that were out of the train-
ing range, there was no meaningful accuracy degra-
dation compared to other setups, demonstrating how
our model has generalized efficiently, well-behaving
even in unseen poses. More importantly, while trained
on synthetic data with an assortment of augmentations
(noise and backgrounds) it has managed to produce
high quality segmentation results in realistic data ac-
quired from various sensors as seen in Fig. 5. Seg-
mentation results for all experiments are available in the
supplementary material.

Overall, the results presented in Table 1 show that our
method outperforms others, except for the SIFT-based
one enhanced with the graph-based refinement step.
However, our method removes the need for markers,
which is a cumbersome and error-prone procedure dur-
ing the assembly of the structure. Moreover, in the mis-
assembly experiments the semantic based method out-
performs the marker-based one and, as seen in Fig. 6
it was able to converge in all cases despite the errors,
compared to the other methods that did not converge in
all cases. This is due to a robuster initial alignment (and



a b c d e f g h
LiveScan3D 6.2 642 707 644 735 957 630 1040
Sparse-Only | 10.85 1194 7.50 842 8.66 1144 11.01 12.36
Sparse+Graph | 5.8 652 584 618 6.29 950 743 1225
Ours 639 630 631 661 756 6.67 668 7.15

Table 1: RMSE results (in mm) of our method and the compared ones. Approximate sensors’ placements were:
a~{p:1.7m,z:05m}, b~ {p:1.7m,z:028m}, c ~{p :2.0m,z:0.28m}, d ~{p :2.0m,z:0.5m}, e~ {p :
2.0m,z : 0.5m globally rotated compared to d }, f ~ {p : 2.0m,z : 0.5m with translational error}, g ~ {p : 2.0m,z :
0.5m with rotational error} and i ~ {p : 2.0m, z : 0.5m with both rotation and translational errors}

by extension correspondence estimation) that helps the
dense post-refinement step rectify any potential errors.

5 CONCLUSIONS

In this work, we have presented a markerless structure-
based external calibration method for multi-sensor se-
tups oriented towards 3D performance capture. Instead
of relying on markers to establish correspondences, we
exploit the known structure’s geometry and train a CNN
to semantically label perspective depth maps acquired
when viewing the calibration structure. It is an inno-
vative alternative to sparse feature-based spatial align-
ment that only works with depth input instead of relying
on color information. We have demonstrated that this
is indeed an effective approach that minimizes human
error when assembling the structure and simplifies the
overall process. In addition, we showcase how machine
learning can be used in the task of multi-sensor spa-
tial alignment. Overall, our method offers an easier and
more practical multi-sensor calibration process that is
more appropriate for a wider offering of free-viewpoint
capture technologies.

Regarding the limitations of our method, it cannot be
used to spatially align viewpoints that are looking out-
wards like showcased in [Kow15]. Additionally, its ef-
fectiveness in greater distances is questionable, but that
is also a concern in general for depth sensors, whose ac-
curacy degrades proportionally to the measured depth.
Further, generalization to any position around the struc-
ture is something that should be explored in the future
to allow for arbitrary positioning of the sensors (e.g.
setups focusing on frontal captures only). Moreover,
sparse alignment is reliant on a good segmentation re-
sult as erroneous estimates would cause the median cal-
culation to drift. Finally, given that training is coupled
to the selected sensor, applicability to a variety of sen-
sor types might require re-training using new intrinsic
parameters, however re-training is an one-time require-
ment.
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