
Comparing CNNs and JPEG for Real-Time
Multi-view Streaming in Tele-Immersive Scenarios

Konstantinos Konstantoudakis*, Emmanouil Christakis*, Petros Drakoulis, Alexandros Doumanoglou,
Nikolaos Zioulis, Dimitrios Zarpalas, and Petros Daras

Visual Computing Lab (VCL), Information Technologies Institute (ITI)
Centre for Research and Technology - Hellas (CERTH)

Thessaloniki, Greece
Email: {k.konstantoudakis, manchr, petros.drakoulis, aldoum, nzioulis, zarpalas, daras}@iti.gr

Abstract—Deep learning-based codecs for lossy image com-
pression have recently managed to surpass traditional codecs
like JPEG and JPEG 2000 in terms of rate-distortion trade-
off. However, they generally utilize architectures with large
numbers of stacked layers, often making their inference execution
prohibitively slow for time-sensitive applications.

In this work, we assess the suitability of such compression
techniques in real-time video streaming, and, more specifically,
next-generation interactive tele-presence applications, which im-
pose stringent latency requirements. To that end, we compare
a recently published work on image compression based on
convolutional neural networks which achieves state-of-the-art
compression ratio using a relatively lightweight architecture,
against a CPU and a GPU implementation of JPEG, measuring
compression ratios and timings.

With these results, we run a simulation of a tele-immersion
pipeline for various networking conditions and examine the
performance of the compared codecs, calculating framerates and
latencies for different codec/network combinations.

Keywords-Video, Compression, Tele-Immersion, 3D Media
Streaming, Performance Evaluation

I. INTRODUCTION

The last decade has seen a rapid growth in the amount
of image and video data that is being created, stored, and
transferred over the Internet. Advancements in the resolution
of both capturing and display devices have increased the
average amount of data per image, while the ubiquity of
smartphones provides even non-expert users with the means to
easily and inexpensively create image and video content. With
technology providing the means, the prevalence of (largely
multimedia-oriented) social media in daily life gives the incen-
tive, thus making content creation a large-scale and everyday
phenomenon.

The huge amount of images and videos that are created,
stored and transferred showcases the need for efficient com-
pression of these media. This applies even more in real-
time video streaming scenarios, where low video bitrate must
be balanced against low encoding and decoding time, so
as to prevent significant lag in the live viewing experience.
This can lead to decisions not normally applied to video

This work has been supported by the EC Project 5G-MEDIA www.5gmedia.
eu. This project has received funding from the European Union Horizon 2020
research and innovation programme under grant agreement No 761699.

* indicates equal contribution.

coding, such as foregoing motion compensation, which leads
to better compression ratios, in order to save the encoder the
computational load that even fast motion estimation algorithms
entail. Without motion estimation, temporal redundancy is not
exploited and video frames are encoded and transferred as
individual images. In such a case, efficient and fast image
compression algorithms, such as JPEG, can be used to com-
press each frame.

Furthermore, with recent advances in the field of machine
learning, alternative approaches to traditional image codecs
have emerged. Convolutional neural networks (CNNs: [1]–
[6]), generative adversarial networks (GANs: [7], [8]) and
recurrent neural networks (RNNs: [9], [10]) have all been used
to compress images. Unfortunately, most machine learning
approaches suffer from slow encoding and decoding times,
even when running on GPUs. However, a few report timings
that are not prohibitively high for real-time applications, and
could thus compete with more traditional codecs, at least in
certain hardware and network environments.

The present work aims to compare different encoding
strategies adapted to a scenario of live multi-view video
streaming, which is one of the most exacting applications
with respect to both compression and speed in encoding (and
decoding). More specifically, we consider the case of tele-
immersive media, where streaming multi-view video content is
used to texture real-time 3D reconstructed meshes representing
actual captured humans. In this setting four cameras capture
a user from different angles in order to create a self-user
representation [11]. Thus, four different video streams must
be encoded, transferred and decoded in real time.

Towards this end, we have assessed the performance of
different implementations of the JPEG algorithm as well as
the CNN presented in [1], with respect to encoding and
decoding time, standard image quality metric MS-SSIM, and
the achieved compression ratio. The methods are compared
with each other, the advantages and disadvantages of each
are highlighted, and the usefulness of each in a number of
possible scenarios, as regards network conditions and available
hardware, are discussed.

The rest of this paper is organized as follows: Section II con-
tains a compilation of related work; in Section III we compare
three codec implementations and present the corresponding

www.5gmedia.eu
www.5gmedia.eu


rate-distortion curves and timings; then, in Section IV, we
apply these codecs to specific use-case scenarios, relevant
to real-time four-viewpoint tele-immersion; concluding, in
Section V, we discuss the results and their implications.

II. RELATED WORK

In the recent years researchers have published works focus-
ing on image compression using machine learning architec-
tures, including CNNs, RNNs, and GANs. A number of them
have managed to outperform traditional codecs like JPEG,
JPEG 2000 and BPG, producing better rate-distortion curves.
This has already proven useful in many applications where
encoding and decoding times are of less importance than the
amount of storage required for the encoded file. However, such
is not always the case, especially in real-time video streaming,
where encoding and decoding times are of importance to
maintain a level of user experience quality.

In [9], Toderici et al. present an RNN-based image encoder
and decoder which can encode an image in various qualities
and bitrate levels depending on the number of iterations where
every iteration tries to enhance the output of the previous one.
This codec manages to outperform JPEG in terms of the PSNR
and MS-SSIM of the decoded image, especially in the lower
bitrates. However, the multiple iterations of the RNN push the
encoding and decoding times orders of magnitude higher than
JPEG. Minnen et al. [10] further improve upon these results
by adopting a tile-based approach, enabling a finer tuning of
local bitrate.

On the other hand, Theis et al. [2] propose a simpler,
CNN-based, autoencoder with subpixel convolutions. Variable
bitrates are achieved by fine tuning a pre-trained network for
different rates, using a number of scale parameters. Cheng et
al. [3] present another convolutional autoencoder architecture,
in which principal component analysis is used to generate
a more energy-compact representation. Li et al. [4] use a
content-weighted importance map so that the bitrate used for
different parts of the image is adapted according to local
image content. The sum of the importance map can serve
as a metric to control compression rate. In [5] Nakanishi
et al. propose a model consisting of two networks, a lossy
autoencoder which encodes multiscale features of the image
and a parallel multiscale lossless coder. Jianrui et al. [6] report
training a CNN to compress images in various bitrates without
having to train a different model for each. They achieve that
by including a Tucker decomposition layer, which decomposes
the latent image representation into a set of projection matrices
and a core tensor. The compression rate is regulated by altering
the rank of the core tensor.

Mentzer et al. [1] also use a modified autoencoder ar-
chitecture, controlling the trade-off between the compression
ratio and distortion through the use context models and cross-
entropy estimation. Different bitrates are achieved by training
models with different number of channels in the bottleneck
of the autoencoder and by adjusting the trade-off between the
distortion and the entropy of the encoded representation in
the loss function during the training phase. Mentzer et al.’s

approach is of additional interest, as it combines near-state-
of-the-art rate/distortion with a relatively fast and lightweight
CNN architecture and publicly available code.

Finally, GANs have also been successfully used to compress
images. Rippel et al.’s work [7] also features an autoencoder,
including pyramidal analysis, an adaptive coding module and
a GAN-based network which learns to distinguish the original
image from the reconstructed by the autoencoder. The authors
claim that their codec can encode or decode an image from
the Kodak dataset in 10 ms using a GPU, while also achieving
state-of-the-art rate distortion performance in terms of multi-
scale SSIM. And in [8], Agustsson et al. study the use of
GANs for lossy image compression at very low bitrates below
0.1 bits per pixel, where the texture of local regions of the
image becomes impossible to preserve. The generative ability
of GANs is utilized to synthesize such regions from a semantic
label map extracted from the original image.

A performance comparison between three different archi-
tectures for image compression (based on CNNs, GANs,
and super-resolution) is presented in [12]. However, it only
takes rate-distortion into account, therefore only objectively
comparing the different coding methods. In none of the
aforementioned cases is the temporal dimension taken into
account, therefore providing little insight as to the applicability
and performance trade-offs of using such codecs in streaming
applications.

III. CODEC EVALUATION

A. Selection of codecs to compare

Tele-immersion relies on creating the illusion of co-location
for all participating users. To maintain this illusion, and espe-
cially for interactive applications, it is very important that both
a user’s own actions, as well as the actions of other users, are
near-instantaneously reproduced in the virtual environment.
When the time lag between real action and 3D representation
increases, the illusion cannot be maintained, as users cannot
associate lag with real life. This is even more pronounced in
self-user representations in VR settings, where the differences
between the motions performed and the motions sensed result
in cyber-sickness.

Furthermore, tele-immersion entails the transfer of much
more data than regular videos. At the very least, image-based
representations transfer multiple viewpoint videos of each
user and interpolate intermediate positions from these. More
advanced approaches entail the transmission of each user’s ge-
ometry in a 3D mesh, along with a number of texture images,
which capture color information from different viewpoints and
which are subsequently used to texture the mesh. The present
work assumes four different viewpoint videos which capture
a user from different angles, accompanied by a 4D (3D+time)
mesh representation of the user’s geometry.

In order to keep time lag to a minimum, and also given
the heavy processing required to produce this representation
in real-time, the decision is often made to not employ inter-
frame compression on the videos, as the process of motion
estimation and compensation across four videos has a very



high computational cost. Instead, each video frame can be en-
coded individually with a fast and simple image encoder, such
as JPEG. This increases the amount of data that needs to be
transferred over the network, but decreases the computational
load on the encoder, which is translated to latency as a result
of the processing time required to encode 4 videos.

Deep learning codecs incur a much higher computational
load than JPEG, which makes them quite slower, even running
on GPUs. On the other hand, they promise significantly higher
rate-distortion curves. Thus, a comparison between JPEG and
a relatively fast deep learning image code, oriented towards
the case of multiple viewpoint videos, can be important in
plotting future tele-immersion strategy.

Mentzer et al. [1] have proposed a simple and relatively fast
CNN codec that compares favorably, in rate-distortion terms,
to the state of the art in deep learning image codecs. Fur-
thermore, three different trained CNN models, corresponding
to different points on their rate-distortion curve, are publicly
offered. Other interesting machine learning methods either
proved too slow for this real-time scenario ([2], [9]) or were
unavailable for independent validation ([7]). For these reasons,
in the following pages we will compare heavily optimized
CPU [13] and GPU [14] implementations of the JPEG codec
to the CNN codec described in [1]. In the following pages, all
references to CNN models regard the CNN from [1].

B. Experimental setup

1) CNN architecture: The encoder in [1] downscales the
input image by a factor of 8 in each dimension, with a variable
channel depth, depending on the exact model used. In their
work the authors alter the basic convolutional autoencoder
architecture to apply an importance map as an extra channel
on the encoder’s output. The value of the importance map
at each position defines the number of channels which will
be actually encoded. The important channels for each position
are quantized to 6 non-uniform quantization levels; all the rest
are set to zero. In this way, the importance map regulates the
number of bits to be used for each region of the encoded
image.

In order to be efficiently compressed, the encoder’s output
must then undergo (lossless) entropy coding. Mentzer et al.
propose an arithmetic encoder for this purpose, which takes
into consideration the frequencies and probabilities of symbols
within a specified context area for each symbol. This pro-
cess produces compression very close to the theoretical limit
imposed by cross-entropy, but, mainly due to this extensive
context calculation, proves to be prohibitively slow for real-
time applications. Hence, in our evaluation we decided to
use a different, much faster entropy coder instead. Since
a large number (close to half of total) of elements at the
encoded output are set to zero, and most of them are grouped
together, run length encoding, followed by Huffman coding,
was deemed the best choice. This was implemented by the
hzr open source encoder [15], which reports fast encoding
and decoding times, in the range of 6-13 ms total (for all 4
textures). The hzr entropy coding scheme produces more bits

per pixel than what is reported in [1], but at a fraction of the
time, which is more important in the tele-immersion scenario,
as will become clear in the next section. Other open source
entropy coders either failed to achieve significant compression
(zlib [16], lz4 [17]) or proved too slow to be considered in
this real-time scenario (bzip2 [18]).

2) Metrics: In evaluating the three implementations men-
tioned above we measured:

• Encoding time
• Decoding time
• Bits per pixel (bpp)
• Multi-scale Structural Similarity Index Metric (MS-

SSIM)
We chose to include the MS-SSIM [19] metric rather than

PSNR in our evaluation, as the CNN presented at [1] is opti-
mized to maximize MS-SSIM, and the MS-SSIM has proven
to be more consistent with the subjective human evaluation of
image quality. The above quantities were measured for each
of the three publicly available models of the CNN, and for a
number of compression levels for the JPEG implementations.
The MS-SSIM metric was combined with bpp to plot a rate-
distortion curve for each codec. In the case of the CNN,
encoding and decoding timings include the hzr encoding and
decoding time as well. Further, for the GPU implementations,
the timings include all memory communication from the CPU
to the GPU and vise versa, better reflecting the case of real-
time streaming where the compressed memory will be deliv-
ered to the host system (i.e. CPU memory) for transmission.

3) Dataset: In order to emulate the tele-immersion sce-
nario, all tests were conducted using actual samples from a
tele-immersive pipeline [11], in which each sample consists
of four color images which capture the user from a different
viewpoint angle. Each image is sized 960x540 pixels, making
one sample (of 4 images) the equivalent of a single full HD
image, and have never undergone lossy compression. A total
of 10 samples were used, each taken from a different tele-
immersion video sequence.

4) Hardware and software configuration: All experiments
were performed on a computer with an 4-core, 8-thread i7
7700K processor at 4.5 GHz, and 32GB of DDR4 RAM. The
GPU implementation for JPEG, as well as the CNN from [1]
were executed on a GeForce GTX 1080 Ti GPU with Cuda
8.0 installed [14]. The CNN requires Python and TensorFlow
[20]; Python version 3.5.2 and TensorFlow 1.4.1 were used in
the experiments.

C. Results

Fig. 1 shows a rate-distortion curve for each of the three
codecs, plotting the mean MS-SSIM value for the whole
dataset against the mean number of bits per pixel, for JPEG
qualities with bitrates comparable to the CNN (0.5-1.5 bpp).
The labels near each point on the figure denote the JPEG
quality (Q) or the CNN model that generated it. It can be seen
that the CNN outperforms both implementations of the JPEG
codec. Furthermore, the CPU implementation achieves lower
distortion than the GPU implementation at the same bitrate.



Fig. 1: Rate/distortion curve for the CPU and GPU JPEG implementations, and the CNN from [1].

In order to achieve a fair comparison in the following
experiments, both in this and in the next section, each of
the three CNN models was matched to that quality levels
of the two JPEG implementations that produced roughly the
same MS-SSIM. Table I shows the correspondence between
equivalent, in terms of MS-SSIM, modes of the three codecs.

In the following pages each model of the CNN will be
compared to the corresponding qualities of the JPEG imple-
mentations.

Fig. 2 and 3 show the timings of the encoding and de-
coding processes, respectively, for the three CNN models
and the corresponding JPEG qualities, in logarithmic scale.
As expected, the CNN is much slower than the two JPEG
implementations during both encoding and decoding, with
no significant variations between models. While the GPU

TABLE I: CNN models and equivalent JPEG qualities

CNN model [1] CPU JPEG quality GPU JPEG quality MS-SSIM
1103 50 65 ≈ 0.9836
1309 75 85 ≈ 0.9912
1310 85 90 ≈ 0.9947

implementation of JPEG in much faster in the encoding phase
compared to the CPU one, decoding is actually faster in
the CPU implementation. We found that this interesting fact
holds only for the higher qualities of JPEG, while on the
lower qualities the GPU implementation is faster during both
encoding and decoding.

With the JPEG timings well below the 10 ms mark, neither
JPEG implementation is expected to impact negatively on the
frame rate or latency of a tele-immersion system. The CNN,
on the other hand, showing an average encoding time of 124
ms, is bound to have a drastic impact on both frame rate and
latency. In the next section we will validate these expectations,
testing the above results on three different network conditions.

IV. USE-CASE SCENARIO

A. Tele-immersion pipeline

Having acquired the benchmarking measurements from the
experiments detailed in Section III, we can now use them
in a theoretical model of a tele-immersion pipeline, which
considers conditions on the encoder’s side, on the decoder’s
side, and on the network.



Fig. 2: Encoding times for the three CNN models and
equivalent qualities of CPU and GPU JPEG.

Fig. 3: Decoding times for the three CNN models and
equivalent qualities of CPU and GPU JPEG.

Fig. 4 illustrates a typical video streaming pipeline, consist-
ing of the encoder, the decoder, and the network that connects
the two. This is a simplified version of a tele-immersion
pipeline as presented in [21], which would also include 3D
mesh transmission, alongside the image frames. Each frame
of input video, on the sender’s side, must go through the
following stages before being ready for consumption by the
remote user:

1) compression by the encoder
2) queue to enter the network

3) transfer via the network to the remote computer
4) queue to be processed by the decoder
5) decompression by the decoder
Each of the above stages incurs a possible time cost; after

each stage the frame rate at that point can be calculated, with
each stage along the way having a frame rate either equal to
or lower than the rate of the previous stage. The compression
and decompression times have been directly measured. The
other timings, as well as the frame rates at each stage, can
be inferred by: the average compressed frame size, which
has also been directly measured and comprises the amount
of data to be transferred over the network; and the network’s
own conditions. The latter can be described by the network’s
effective bandwidth (EBW), as calculated using the Mathis
equation [22], and its round-trip time (RTT) between sender
and receiver. Thus, by setting the EBW and RTT we can define
a number of different network scenarios, and calculate the
frame rate at the remote user as well as the total end-to-end
latency.

Accordingly, we have constructed a theoretical model that:
1) considers the codec specifications (i.e. timings and com-

pressed data size), and the network conditions
2) emulates the tele-immersion pipeline described above
3) calculates the projected frame rate, and the minimum

and maximum end-to-end latency.
Since the objective of this paper is to ascertain the suitability

of each codec in compressing textures in a realistic tele-
immersion scenario, our calculations include encoding time
and bandwidth for compressed mesh data, as well as a 0.05%
probability for packet loss, which is considered typical [23].
Each frame is considered to be a group of four texture images
of dimension 960x540 pixels, as well as the 3D data (mesh and
attributes required for texturing/rendering). For simplicity, the
queues at the encoder and the decoder are assumed to have
a length of 1, i.e. if a frame arrives at the queue while the
previous frame has not started being processed, the newest
arrival replaces the older. Thus, we calculate two values for
latency, minimum and maximum: minimum latency occurs
when a frame waits no time at all at both queues (i.e. the
queues are empty when the frame arrives, and so its processing
begins immediately - first queue on Fig. 4), while maximum
latency denotes maximal additional time at both queues. Since

Fig. 4: Video streaming pipeline, with the flow of image data from sender to receiver (above), and the latencies incurred at
each step (below). The first and second queue show examples of minimum and maximum latencies respectively.



we assume a queue length of 1, maximum waiting time at a
queue corresponds to the case where the previous frame has
just begun processing, and is the time required for one whole
frame to be processed (second queue on Fig. 4).

B. Experimental results

We evaluate the codecs in three common network scenarios:
1) A standard network within the same country (100 Mbps

bandwidth, 10 ms ping time)
2) A high speed and low latency network (1 Gbps band-

width, 1 ms ping time)
3) A low bandwidth and high latency network (10 Mbps

bandwidth, 50 ms ping time)
For each network scenario, we evaluate each of the three

models of the CNN codec, and compare it with its correspon-
ding CPU and GPU JPEG implementations, i.e. those that
produce the same MS-SSIM (see Table I). Thus, with a given
visual quality and within a given network, we compare the
three codecs regarding frame rate and latency.

Fig. 5 presents the results of these experiments. Each sub-
plot focuses on a given network scenario (columns) and a
given distortion level (rows). In each, one of the three available
CNN models is compared with the equivalent CPU and GPU
JPEG implementations from Table I, and thus corresponds to
a particular visual quality. The different sub-plots present the
resultant frame rate (fps) at the decoder, and the minimum
and maximum latencies involved. Each quantity follows its
own scale, which is constant across all nine sub-plots.

Clearly, in the first two network scenarios, the CNN models
produce both much lower frame rates and much higher laten-
cies than either JPEG implementation. In the low-bandwidth,
high-latency network scenario, where network conditions cap
the minimum latency and higher compression is important
because of the limited bandwidth, the CNN produces com-
parable, and slightly higher, frame rates compared to JPEG.
However, in this scenario all three codecs produce frame rates
prohibitive to real-time video.

In terms of latency, the CNN also produces the highest,

Fig. 5: Frames per second, minimum and maximum latency for different network scenarios (rows) and distortion levels
(columns).



though this difference becomes less pronounced on slower
networks, where the network’s intrinsic latency is larger.
The latencies observed for the CNN, at all three network
scenarios, would impact negatively both the illusion of co-
location and any interaction, though they are acceptable for
(non-interactive) spectating of live events.

Comparing the two JPEG implementations to each other, it
may be noted that running on a GPU produces better results
on the high speed network, where the somewhat larger bitrates
produced have no significant impact. However, on an average
national network the CPU implementation may be preferable,
due to its higher compression ratio for a given distortion level.

V. CONCLUSION

In the previous sections a relatively fast image compression
CNN was compared to two implementations of the popular
JPEG codec, in order to determine the suitability of deep
learning codecs to tele-immersion. The codecs were first
compared by their rate-distortion curves, where it was shown
that the CNN can produce lower distortion for the same bitrate,
or, equivalently, lower bitrate for the same distortion level.

The main drawback of the CNN lies in its larger computa-
tional load. Compared to the JPEG codecs, which have been
well optimized since that codec’s inception, the CNN exhibits
much slower timings during both encoding and decoding.

Applying these results to three typical simulated networks,
it is apparent that the CNN’s slow timings render it unsuitable
for live video streaming at high resolutions in general, and tele-
immersion in particular. The two implementations of JPEG are
roughly equivalent to each other, with each being best suited
to particular network conditions.

The combination of high compression ratio and slow exe-
cution should make the CNN approach more suitable on
scenarios characterized by very powerful encoder and decoder
hardware and a low-bandwidth network. At present, this does
not seem likely, as cloud and edge computing push computer
systems to rely more on high speed networks and less on local
hardware. However, with new, more powerful GPUs in the near
future, CNNs could prove to be useful in specific cases.

In any event, it is clear that CNNs need to be made signi-
ficantly faster if they are to compete with the more traditional
image encoding algorithms in real-time streaming scenarios.
With machine learning applied to image compression a rela-
tively young scientific field, it is likely that significant progress
may be achieved in this regard in the near future. Besides
boosting their encoding/decoding performance, CNNs provide
a multitude of additional benefits that can be exploited such
as simultaneous multi-scale predictions for adaptive streaming
scenarios, or simultaneous multi-view coding. Future work
should aim in fully exploiting the potential that CNNs offer
to align them with real-time interactive streaming scenarios.

REFERENCES

[1] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van Gool,
“Conditional probability models for deep image compression,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[2] L. Theis, W. Shi, A. Cunningham, and F. Huszr, “Lossy
image compression with compressive autoencoders,” in International
Conference on Learning Representations, 2017. [Online]. Available:
https://openreview.net/pdf?id=rJiNwv9gg

[3] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Deep convo-
lutional autoencoder-based lossy image compression,” CoRR, vol.
abs/1804.09535, 2018.

[4] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang, “Learning convolutional
networks for content-weighted image compression,” arXiv preprint
arXiv:1703.10553, 2017.

[5] K. Nakanishi, S. ichi Maeda, T. Miyato, and D. Okanohara, “Neural
multi-scale image compression,” CoRR, vol. abs/1805.06386, 2018.

[6] J. Cai, Z. Cao, and L. Zhang, “Learning a single tucker decomposition
network for lossy image compression with multiple bits-per-pixel rates,”
CoRR, vol. abs/1807.03470, 2018.

[7] O. Rippel and L. Bourdev, “Real-time adaptive image compression,” in
International Conference on Machine Learning, 2017.

[8] E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte, and L. Van Gool,
“Generative adversarial networks for extreme learned image com-
pression,” arXiv preprint arXiv:1804.02958, 2018.

[9] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen,
J. Shor, and M. Covell, “Full resolution image compression with
recurrent neural networks,” CoRR, vol. abs/1608.05148, 2016. [Online].
Available: http://arxiv.org/abs/1608.05148

[10] D. Minnen, G. Toderici, M. Covell, T. Chinen, N. Johnston, J. Shor, S. J.
Hwang, D. Vincent, and S. Singh, “Spatially adaptive image compression
using a tiled deep network,” in Image Processing (ICIP), 2017 IEEE
International Conference on. IEEE, 2017, pp. 2796–2800.

[11] D. S. Alexiadis, A. Chatzitofis, N. Zioulis, O. Zoidi, G. Louizis,
D. Zarpalas, and P. Daras, “An integrated platform for live 3d human
reconstruction and motion capturing,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 27, no. 4, pp. 798–813, April
2017.

[12] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Performance comparison
of convolutional autoencoders, generative adversarial networks and
super-resolution for image compression,” 07 2018.

[13] “libjpeg-turbo,” https://libjpeg-turbo.org/, accessed: 2018-08-29.
[14] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel

programming with cuda,” in ACM SIGGRAPH 2008 classes. ACM,
2008, p. 16.

[15] “hzr,” https://github.com/mbitsnbites/hz, accessed: 2018-08-29.
[16] “zlib,” https://zlib.net/, accessed: 2018-08-29.
[17] “lz4 2.1.0,” https://pypi.org/project/lz4/, accessed: 2018-08-29.
[18] “The bzip2 and libbzip2 official home page,”

https://www.sourceware.org/bzip2/, accessed: 2018-08-29.
[19] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural

similarity for image quality assessment,” in The Thrity-Seventh Asilomar
Conference on Signals, Systems & Computers, 2003, vol. 2. Ieee, 2003,
pp. 1398–1402.

[20] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[21] N. Zioulis, D. Alexiadis, A. Doumanoglou, G. Louizis, K. Apostolakis,
D. Zarpalas, and P. Daras, “3d tele-immersion platform for interactive
immersive experiences between remote users,” in 2016 IEEE Interna-
tional Conference on Image Processing (ICIP), Sept 2016, pp. 365–369.

[22] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior
of the tcp congestion avoidance algorithm,” ACM SIGCOMM Computer
Communication Review, vol. 27, no. 3, pp. 67–82, 1997.

[23] D. Zhang and D. Ionescu, “Reactive estimation of packet loss proba-
bility for ip-based video services,” IEEE Transactions on Broadcasting,
vol. 55, no. 2, pp. 375–385, 2009.

https://openreview.net/pdf?id=rJiNwv9gg
http://arxiv.org/abs/1608.05148
https://www.tensorflow.org/

