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Abstract—Multi-view capture systems are complex systems
to engineer. They require technical knowledge to install and
intricate processes to setup related mainly to the sensors’ spatial
alignment (i.e. external calibration). However, with the ongoing
developments in new production methods, we are now at a
position where the production of high quality realistic 3D assets is
possible even with commodity sensors. Nonetheless, the capturing
systems developed with these methods are heavily intertwined
with the methods themselves, relying on custom solutions and
seldom - if not at all - publicly available. In light of this, we
design, develop and publicly offer a multi-view capture system
based on the latest RGB-D sensor technology. For our system, we
develop a portable and easy-to-use external calibration method
that greatly reduces the effort and knowledge required, as well
as simplify the overall process.

Keywords-Multi-view system, 3D Capture, RGB-D, Registra-
tion, Multi-sensor calibration, VR, AR, Intel RealSense

I. INTRODUCTION

The ongoing developments related to Virtual Reality (VR)
and Augmented Reality (AR) technologies, and more im-
portantly the availability of new presentation devices - head
mounted displays (HMDs) - are also increasing the demand for
new types of immersive media. Superseding traditional video,
three-dimensional (3D) media are suited for both VR and AR
and have been termed as ”Free Viewpoint Video (FVV)” [1],
”Volumetric Video”, ”Holograms” [2] and/or ”3D/4D media”2.
They offer the ability of selecting any viewpoint to watch
the content, essentially allowing for unrestricted viewing,
therefore greatly increasing the feeling of immersion.

Besides the expensive and laborious production of 3D media
by artists using 3D modeling and animation software, there
are various ways to 3D capture the real world and digitize it.
Like typical video, 3D media can be consumed either in a live
[2], [3] or in an on-demand manner [1], [4], with state-of-the-
art systems allowing for deformations and topology changes.
Offline systems typically use a pre-defined template that will
be fit on the data [5] or otherwise utilize lengthy reconstruction
processes [1]. Consequently, 3D media production can either
be real-time or post-processed. Either way, the backbone of re-
alistic 3D content productions is a multi-view capture system.
Such systems are complex to develop due to the large number

1Indicates equal contribution
2These terms are used interchangeably in this document.

of choices associated to their design. This system complexity is
also translated to increased costs, specialized hardware (HW)
requirements and technically demanding processes.

Initially the multi-view capture system needs to be set up,
a process that, depending on choice of the type and number
of cameras/sensors can greatly vary. Using stereo pairs for the
extraction of depth in a live setting requires extra processing
power to be allocated for the disparity estimation task for each
viewpoint (i.e. stereo pair) [2]. An offline system that operates
on a template model fitting basis using the extracted silhouettes
[6], [7], requires a larger number of cameras whose live feeds
need to be recorded, thereby necessitating the use of large
storage. The most suitable topology and architecture depends
on the targeted use case. In the former case, besides setting up
the stereo pairs, each one needs to be connected to a computer,
with the processing offloaded to another workstation. In the
latter case, depending on the frame-rate, resolution, encoding
performance and disk writing throughput, the setup of a multi-
disk server or a distributed local storage topology is required.

Following the installation of the multi-view capture system,
a number of preparatory steps are needed before its actual
use. These potentially involve spatial (external and internal
calibration) and temporal (synchronization) alignment of the
sensors. These processes can introduce new HW requirements
(e.g. external signal triggers for synchronization [1], [2], [6],
or external optical tracking systems for calibration [8]) and
are usually accomplished via complex procedures (e.g. moving
checkerboard [2] or intricate registration structures [1]).

Overall, as a combination of design decisions and com-
plexity in operating, most existing multi-view capture systems
are hindered by high HW costs, stationarity due to being
hard to relocate after installation, or come with considerable
technical requirements, forbidding adaptability and non-expert
use. Our goal in this work is to design and deliver a flexible
and up-to-date consumer level multi-view capture system to
support affordable content creation for AR and VR. Our
design is oriented towards taking steps in improving cost
expenditure, portability, re-use and ease-of-use. In summary,
our contributions are the following:
• A publicly available volumetric capture system utilizing

recent sensor technology offered online at https://github.
com/VCL3D/VolumetricCapture.

• The design of a low-cost, portable and flexible multi-view

vcl.iti.gr
https://github.com/VCL3D/VolumetricCapture
https://github.com/VCL3D/VolumetricCapture


capture system.
• A quick, robust, user friendly and affordable multi-sensor

calibration process.

II. RELATED WORK

Multi-view capturing systems have mostly been developed
for eventually producing three-dimensional content and are
highly complex systems to design [9]. They typically require
numerous sensors that need to be positioned, synchronized
and calibrated and functionally they need to support either, or
both, live acquisition and recording. They capture full 3D, by
extracting the geometrical information of the captured scene,
or pseudo-3D, by estimating the scene’s depth and offering
limited free viewpoint selection. Two of the pioneering works
in this direction are [10] and [11] respectively. The first
one used a large number of cameras placed in a dome to
surround the captured area and extracted complete geometric
information, while the second one placed the cameras in front
of the users and estimated the captured scene’s depth.

A state-of-the-art multi-view capturing dome has recently
been presented in [12] that comprises 480 VGA, 31 HD cam-
eras and 10 Microsoft Kinect 2.0. Its primary design goal was
the social capture of multiple people. The system is calibrated
using structure from motion and bundle adjustment using a
white tent with a pattern projected on it. While being a very
impressive system to engineer, it is nonetheless a very rigid,
complex and expensive one. A more recent work for frontal
facing multi-view capture [13] showcased 32 cameras placed
in an arc configuration which was calibrated by matching
features found on the floor without the use of any pattern.
Similarly, a system of 18 cameras in an array configuration
that also leveraged the power of GPUs for real-time 3D
reconstruction was presented in [14]. However, its calibration
was accomplished by using Tsai’s checkerboard method [15],
a complex and cumbersome process which requires technical
knowledge by the operator.

For full 3D capture, model-based performance capture
methods [4], [6], [7] allowed for the reduction of the number
of sensors, compared to the aforementioned dome placement
approaches, by employing 8 cameras perimetrically pointing
inwards. As depth sensors’ quality started improving, their de-
ployment in multi-view systems quickly followed as a way to
address the issues of camera-based capturing systems, namely
low 3D reconstruction quality and green screen requirements.
However, preliminary attempts were still calibrated using the
inefficient checkerboard process [16], limiting their flexibility.

As commercial grade depth sensors, and more importantly,
integrated color and depth (RGB-D) sensors started becoming
available, a surge of renewed interest in 3D real-time or 4D
post-processed content production quickly followed. Nonethe-
less, preliminary systems using multiple Kinect sensors either
for 3D reconstruction [17] or marker-less motion capture [18]
still used checkerboard based calibration approaches with even
custom materials required for the latter one. However, in [18],
an initial attempt in taking a step ahead of the typical calibra-
tion process was made by offering an alternative calibration

process using a moving point light source. At the same time,
structure-based calibration systems started surfacing typically
using markers to either directly estimate each camera’s pose
with respect to the structure [19], [20] or as initial estimates
to be densely refined [21]. However, even the state-of-the-art
real-time 3D capturing system of [2], using 16 near infrared
cameras, 8 color cameras and 8 structured light projectors,
still relies on the checkerboard method of [22] for calibration.
Similarly, the high quality 4D production system of [1] that
consists of 106 cameras, relies on an octagonal tower structure
for its calibration, albeit being very complex and hard to
assembly and re-locate.

As a result there have been various works aiming to
make the overall calibration process easier. The work of
[8] utilized an expensive external optical tracking system
to calibrate the multi-view system’s captured volume area
using a checkerboard to further improve the accuracy of
the solution and achieve an easier and more robust work
flow. In [23] and [24], the authors utilize a colored ball that
is moved within the capturing area to establish correspon-
dences and calibrate the multi sensor systems. Additionally,
in [23], their method simultaneously synchronizes the sensors
in addition to calibrating them. While HW synchronization
is the optimal, some sensors do not support it, necessitating
the use of software (SW) based synchronization approaches.
More recently, [25] presented a marker-less structure-based
multi-sensor calibration using a CNN trained with synthetic
structure renders. However, training was limited to specific
angle intervals around the structure. Nonetheless, the presented
multi-sensor calibration process was made significantly easier.

Overall, we find that most systems require complex pro-
cesses to calibrate that need heavy human operations - usually
with technical knowledge. This renders them hard to (re-
)use for commercial purposes, due to heavy customization in
materials and configurations, also limiting their portability. In
addition, most - if not all - systems’ implementations are not
publicly available with some being notorious hard to assemble
and/or develop. Our goal is to design and develop, and publicly
offer an easy to setup multi-view capturing system, with low-
cost components and minimize the technical requirements as
well as process complexity in operating it.

III. VOLUMETRIC CAPTURE

Our volumetric capture system is designed to orchestrate the
capturing, streaming and recording of the data acquired from a
multi-sensor infrastructure. Our focus is oriented towards static
inwards placement for capturing human performances within a
predefined space. Our design choices strive to reach an optimal
balance among affordability, modularity, portability, scalability
and usability.

Sensor: We employ the most recent version of the Intel
RealSense technology [26], a consumer-grade RGB-D sensor
which allows us to reap the advantages of integrated depth
sensing. This reduces the complexity of our system as we
can deploy a single integrated RGB-D sensor instead of 4
(2 gray-scale for stereo computation, 1 for color acquisition



(a) (b) (c)

Fig. 1: Capturing System Overview and Architecture. (a) Our basic system setup, utilizes N = 4 acquisition modules (eyes)
and a central orchestrator workstation. The orchestrator communicates with the eyes through LAN. (b) The acquisition module
is composed of an Intel RealSense D415 sensor mounted on a tripod, connected to an Intel NUC processing unit, also mounted
on the same tripod. (c) Example volumetric capturing station setup with the sensors looking inwards and capturing a 360o

view of the subject.

and 1 projector to improve depth estimation in uniform col-
ored regions) as in [2]. In addition, compared to approaches
surrounding the captured area with monocular sensors [4],
[5], [7], we can deploy less number of sensors due to the
availability of depth information. More specifically we use the
D415 sensor3, which compared to its sibling, the D435, offers
better quality at closer distances due to a denser projection
pattern and also supports HW synchronization between its
color and depth sensors. In addition, this type of sensors offer
inter-sensor HW synchronization. Contrary, using Microsoft
Kinects, would require a soft synchronization solution, that
are typically SW-based, like the audio synchronization of
[3], adding yet another process when setting up the system.
Further, the D415 sensors allow for setting up each sensor as
a master or slave, and as a result, the requirement and added
complexity and cost of using and having to setup, external
HW triggers is lifted.

Architecture: Our building block is an acquisition module,
called an eye, that represents a viewpoint positioned globally in
relation to the capturing volume and is serving a RGB-D data
stream. We connect N eyes in a distributed fashion to work
towards a common goal, providing fused colored point clouds
or otherwise registered multi-view RGB-D streams. These are
delivered into a client that is also the orchestrator, controlling
the behavior and parameterization of the eye server units
through message passing. Control messages as well as data
streams are transferred by a broker using a publish-subscribe
event-based architecture, with the system’s data flow depicted
in Figure 2. All these aforementioned components comprise a
single coherent, Volumetric Capture system.

Hardware: The physical interpretation of our eye acqui-
sition module is illustrated in Figure 1b. A D415 sensor is
mounted on a tripod and connected to an Intel NUC mini-PC,
which is in turn mounted on a tripod VESA mount. These,
and the orchestrator, are connected via Ethernet cables to a

3https://software.intel.com/en-us/realsense/d400

Fig. 2: Volumetric Capture data flow. Multiple (N ) acqui-
sition modules (eyes) capture the scene’s color and depth
information. The acquired data are first compressed, serialized
and published to the message broker over the network. The
orchestrator client then deserializes and decompresses the
received messages to visualize and/or store them.

LAN switch as seen in Figure 1a. The switch’s bandwidth
depends on the number of sensors and their streams’ resolution
and frame rates, but for typical 360o capture use, at least a 1
Gbps bandwidth is required. Another important specification
is that it needs to be non-blocking to be able to handle all of
its ports’ bandwidths at full capacity simultaneously. This is
essential when using HW synchronization, as network traffic
comes in bursts that would otherwise manifest in extra latency.
Furthermore, through the use of mini-PCs, we distribute
processing at a negligible effect on the system’s portability.
This way we move the computational burden of compression
and pre-processing on the acquisition modules, allowing for
more efficient recording and overall reduced computational
complexity on the receiving client.

An alternative to our distributed design would be to connect
all sensors into a single workstation, which could arguably
slightly increase its portability. However, this design choice
requires the installation of additional USB 3.0 controllers, as

https://software.intel.com/en-us/realsense/d400


each sensor consumes high bandwidth to stream data in higher
resolutions and frame rates. Because of this, the cables of the
D415s are very short (1m) and, therefore, high quality USB
3.0 extension cables would be required. Depending on the
distance and the data rate, optical repeaters might be needed
that greatly increase the cost, bringing it on par with our HW
choices. Further, scalability would be limited to the USB 3.0
extension slots that a high-end motherboard can support and
input-output bandwidth.

Implementation Details: Our system’s main components,
the client (orchestrator) and server (eye), are natively imple-
mented in C++. Since we utilize headless clients (mini-PCs),
an automated way of discovering the acquisition modules is
required. To that end, we deploy a service to each mini-
PC, developed in C#, that listens for broadcast messages to
spawn the eye component process. For our message broker, we
use RabbitMQ which can be co-located with the orchestrator
component. We use lossy compression for the color streams
and lossless compression for the depth streams. Compression
method choices aim at minimizing acquisition latency to
enable use in real-time 3D reconstruction scenarios. To that
end, we use intra-frame JPEG compression for the color
streams, and entropy-based compression for the depth streams.
For the former an SIMD optimized version [27] is used, while
for the latter, a variety of algorithms are used under a blocking
optimization technique [28]. This allows for a more explicit
control of the overall bandwidth that each eye unit produces, as
the depth stream mostly dominates the encoding performance
and resulting compressed frame sizes.

Fig. 3: 3D capture snapshot acquired from the Volumetric
Capture application showcasing the calibrated output when
capturing a human subject. Each viewpoint’s pose is also
depicted via the camera frustum placements.

IV. PRACTICAL CALIBRATION

The cornerstone of multi-view systems is the spatial align-
ment, or otherwise external calibration of the sensors with
respect to a global coordinate system, as seen in Figure
5. Typical checkerboard calibration processes require heavy
human intervention as well as technical knowledge to avoid
ambiguous or error-prone checkerboard poses. In order to
make this process more convenient and usable by non-
technical personnel, we opt for a structure-based calibration

that only requires users to assemble and place the structure
within the capturing volume. While previous such approaches
placed markers or patterns on the structures [1], [3], [29], we
extend and improve the marker-less calibration of [25].

Structure: Similar to [3] and [25] we use a structure
assembled out of commercially available packaging boxes
whose dimensions are standardized. This allows us to create
a virtual replica of the calibration structure in the form of a
3D model. In practice we use 4 boxes and deviate from the
structure assembly of previous approaches so as to create a
fully asymmetric structure that, at the same time, has no fully
planar views. This way, we naturally resolve any difficulties in
identifying each of the structure’s sides and further guarantee
that the extracted correspondences will not produce ill-formed
or ambiguous solutions when used to estimate the sensor’s
pose. The updated structure can be seen in Figure 4 that also
showcases the changes compared to the structure of [25].

(a) (b) (c)

Fig. 4: Update of the calibration structure. In (a) the old
calibration structure is presented, on which the planar side
can be seen with green overlay. In (b) where the updated
calibration structure is presented, there is no longer any
coplanar side. Each side segments of the calibration structure
can be seen in (c)

Training Data: Our goal is to use the structure’s prior
knowledge to establish correspondences between each sensor’s
viewpoint and the global coordinate system that the structure
defines. Since we aim to be using no markers, and therefore
no color information, this is accomplished by training a CNN
to identify these correspondences. The virtual 3D model can
then be used to generate training pairs on-the-fly. By placing a
virtual camera at a relative position around the 3D model that
defines the center of the coordinate space, we can render it and
generate a depth map D(p) ∈ R out of the resulting z-buffer,
where p = (u, v) ∈ Ω ⊂ N2 represents pixel coordinates
in the image domain Ω : u ∈ [1, . . . ,W ], v ∈ [1, . . . ,H],
with W and H its width and height respectively. Given also
a material of the model, we can additionally output a texture
map L(p) ∈ R3 acquired from the resulting render buffer.
By assigning a different material (i.e. color) in each of the
four boxes’ sides (total 24 distinct sides), these images then
correspond to a depth map semantic segmentation supervision
pair {D(p),L(p)}. Our rendered data are generated at a
resolution of 320×180, corresponding to a downscaled (factor
of 4) depth map of a D415 sensor. We also add noise to
the resulting depth maps and augment them with random
backgrounds as in [25], later denoted as D̃(p). However,
our approach differs in various ways that will be thereafter



explained.
Pose Sampling: We sample poses using cylindrical co-

ordinates tc = (ρ, φ, z) defined on the virtual structure’s
coordinate system. These are then transformed to sensor poses
as follows: i) we extract a Cartesian 3D position t3D from
each tc; ii) we estimate a rotation matrix R by estimating the
view matrix from t to the origin (0, 0, 0) of the coordinate
system - which is at the center of the virtual structure model
- using the y axis as the up vector; iii) we augment the
rotation R by adding rotational noise via the composition of
random rotations Ri, i ∈ {x,y, z} around each axis. Similar
to [25], we sample these variables from uniform distributions
U(a, b, c) in intervals [a, b] at steps c:

φn ∼ U (n× 360o

N
− 10o, n× 360o

N
+ 10o, 2.5o),

z ∼ U (0.28m, 0.7m, 0.02m),

ρ ∼ U (1.75m, 2.25m, 0.02m),

e{x,y,z} ∼ U (−10◦, 10◦, 2.5◦),

(1)

with n ∈ [1, . . . , N ] and e being a Euclidean angle around axii
{x,y, z} that is transformed into a rotation matrix R{x,y,z}.
An illustration of this sampling is available in Figure 5. Using
this sampling we try to cover for a wide range of placements
of each nth sensor in a variety of capturing scenarios of N
sensors, while also modeling realistic imperfect approximate
positioning. Contrary to [25], we sample across the whole
circle around the structure but enforce that groups of N
sensors will be placed approximately at the appropriate φ angle
intervals.

Network: Instead of training a CNN to predict dense labels
to identify each specific box’s side on a per depth map basis,
we exploit the complementarity of the N viewpoints and train
our CNN to receive as input all viewpoints jointly. As the
goal is to achieve 360o coverage around a capturing volume,
each viewpoint’s depth view is related to the other viewpoints.
Given that the viewpoints will be evenly placed around the
structure, each viewpoint’s depth map is complementary input
to the rest as it will restrict their predictions. Consequently,
we design a CNN that receives N depth map inputs D̃(p) and
fuses their information to extract this relative and complemen-
tary information. As we cannot fix the sequence of the inputs
because it requires knowledge of the spatial relations, which
is our final objective, we randomize the order of the inputs
the CNN receives during training.

Multi-task Learning: Our task is to label each one of the
structure’s box’s sides, all of which are planar surfaces. Taking
into account that the planar surfaces’ orientation is defined by
their normal, it is apparent that the observed scene’s normal
information is complementary to our box side labeling task.
We exploit this complementarity by designing our network
for multi-task learning to take advantage of this inter-task
relationship. During each render, we also output a normal
map N(p) ∈ R3 in another render-buffer that will be used
to supervise the CNN’s secondary task, normal estimation
from depth maps. Summarizing, our CNN, with its architecture

Fig. 5: Pose generation sampling parameters illustration. Each
sample pose is randomly generated at the (ρ, φ, z) cylindrical
coordinate defined around the calibration structure’s origin.
It is further randomly rotated around the (x,y, z) axii at a
respective Euler angle (ex, ey, ez).

presented in Figure 6, receives as input multiple - randomly
perturbed - depth maps D̃i(p), i ∈ [1, . . . , N ] observing
the same structure from different viewpoints, as well as their
ground truth label maps Li and jointly estimates the semantic
labels’ probability distributions L̂i(p) of the structure’s boxes’
sides as well as their normal maps N̂i(p), for each input depth
map, while fusing their multi-view information. We use a
cross-entropy loss for the labels and a L2 loss for the normals.
We try to minimize the overall loss:

Eoverall =

N∑
i=1

Ei , Ei = Enormal + λEsemantic (2)

over all dataset samples with:

Enormal =
1

M

Ω∑
p

||N̂(p)−N(p)||2, (3)

Esemantic =
1

M

Ω∑
p

Pr(L(p)) log(smax(L̂(p))), (4)

where λ is a weight factor balancing the contributions of the
regression Enormal and classification Esemantic losses, M =
W × H equals the total number of pixels, Pr is a function
that extracts the ground truth probability distribution from the
rendered texture map L, for each pixel p, and smax is the
softmax function evaluated at each corresponding pixel p.

We do not enforce normalized predictions as it has been
observed that the L2 loss alone will suffice in producing
normalized values [30].

Refinement: Finally, we refine the dense label predictions
of the CNN using a dense fully-connected Conditional Ran-
dom Field (CRF) model [31] formulated over the predicted
label distributions L̂ and normals maps N̂. The per pixel p
energy function is:

ECRF (p) =
∑
i

ψunary(pi) +
∑
i

∑
j 6=i

ψpairwise(pi,pj).

(5)



Fig. 6: Our CNN architecture comprises 4 input encoding branches, one for each view, a bottleneck, and 4 output decoding
branches. The input branches’ features are fused through concatenation and fed into the bottleneck. The four output branches
decode the bottleneck into two separate predictions for each branch, densely estimating a normal and label map for each branch.
Each input branch comprises three blocks having two convolution (conv) layers each, with the second downscaling its output
features (stride equal to 2). The bottleneck contains three blocks. The first comprises four convs, with the last one downscaling
its output, while the second block comprises two convs. The bottleneck’s third block updates its input features by using a
deconvolution (deconv) layer (stride equal to 2). Each output branch contains four blocks of layers. The first block utilizes
one conv, followed by two deconvs. The last deconv’s output branches out, to feed the two internal branches of the output
branch. Both of these are composed by two deconvs, with the only difference being the number of the predicted features. The
segmentation branch’s prediction layer classifies 25 features while the normal prediction branch produces 3 output features.
All (de-)convolutional layers use 3× 3 kernels.

The unary potential ψunary(p) is the densely predicted distri-
bution over the label space, describing the cost of a pixel tak-
ing the corresponding label as estimated by the CNN’s output
label probability distribution map L̂. The pairwise potential
terms are Gaussian edge potentials, describing the cost of
variables i and j taking their corresponding labels respectively.
For the pairwise term we use as a feature formulation f similar
to [31] by including the positions in the image space, but
instead of the values in the image (RGB) domain, we use
the values of the predicted normal map N̂. Therefore the
appearance kernel of [31] becomes:

α(fi, fj) = exp(−|pi − pj |2

2σ2
2D

− |N̂(pi)− N̂(pj)|2

2σ2
3D

), (6)

where σ2D and σ3D the ranges that the spatial and normal
kernels operate respectively. This is based on a the same
intuition, that since we are labeling planar surfaces, the esti-
mated normals define the labels, and therefore, their edges and
similarities help in improving the resulting label predictions.

Correspondences and Optimization: Once we obtain
our refined labels, we can extract a single correspondence
from each labeled region. Similar to [25], we back-project
the depths for each region and obtain 3D coordinates, from
which we extract their median value to obtain a robust estimate
for each box’s side’s mid-point. We can then obtain an

initial estimate of each sensor viewpoint’s pose via Procrustes
analysis [32] using the 3D-to-3D correspondences between
the sensor’s view and the virtual 3D model. Using this initial
estimate, we then optimize the dense point clouds from each
back-projected depth map, using ICP formulated with a point-
to-plane error, under a graph-based optimization in order to
obtain a global solution (more details can be found at [25]).

V. RESULTS

We evaluate our proposed calibration method under a variety
of different sensor placements to showcase its robustness to
user sensor placement. Our system can support an arbitrary
number of sensors, limited by the HW (network speed, HDD
write speed) and the use case requirements (resolution, frame
rate). However, in our evaluation we focus on a N = 4 sensor
setup that achieves optimal coverage while keeping the HW
requirements - and by extension the cost - to a minimum.
We train our network using Caffe [33] on an Nvidia Titan
X, with N = 4 input depth maps, for 150k iterations and an
initial learning rate of 10−3, using the ADAM optimizer [34]
initialized with its default values, and with λ = 0.1. When
rendering we use average depth sensor intrinsic parameters
obtained by 9 different factory D415 sensors, divided by the
downscaling factor. We test our network’s performance by
generating a test set with pose samples drawn from uniform
distributions with different parameters than those reported in



Equation 1. These are selected to produce labeled images from
different pose configurations than those used for training. In
this test set, our model achieves a 96.17% mIoU.

We compare our calibration results against other simi-
lar methods, both structure-based and object-based. For the
structure-based method comparisons we use LiveScan3D [21]
by attaching their markers on our structure, and we addition-
ally compare against the marker-based method of [3], [20] by
also attaching QR codes on our structure and enhancing it
with the same graph-based dense optimization step we use,
effectively evaluating only the correspondence extraction’s
effect for the initial pose estimation. For object-based method
comparisons we use the approaches of [23] and [24] which
utilize a ball that is moved within the capturing volume
to establish correspondences to then optimize the sensors’
poses. In order to use the same sequences for comparison, we
updated the method of [24] to work with a green colored ball.
Therefore, we first capture RGB-D data by moving a green
ball attached on a stick with a known diameter (20cm) within
the capturing volume, and then we place the structure and
re-capture data to obtain the necessary input for all methods.
We conduct these experiments for 5 different placements as
presented in Table I. For evaluating the accuracy of the cali-
bration methods we use the Rooted Mean Squared Euclidean
(RMSE) distance between the closest points of adjacent views.
The final error metric of each method is extracted by taking
the mean RMSE distance of all pairs of adjacent views.

TABLE I: RMSE results (in mm) of our method and the
compared ones. Approximate sensors’ placements were: a ∼
{ρ : 1.9m, z : 0.38m}, b ∼ {ρ : 1.3m, z : 0.38m}, c ∼
{ρ : 1.5m, z : 0.38m}, d ∼ {ρ : 1.5m, z : 0.38m − 0.48},
and e ∼ {ρ : 1.8m, z : 0.38−0.48m}. For those not available,
the methods did not manage to converge.).

Method a b c d e
[21] 21.8 N/A N/A N/A N/A
[23] 20.82 18.41 20.79 21.83 N/A
[24] 21.57 N/A 18.52 20.67 21.54

[3], [20] 16.53 14.65 15.06 15.45 N/A
Ours 17.57 15.41 17.26 16.85 19.83

From the results presented in Table I, we see that not all
methods manage to consistently converge into a good solution
apart from ours. In addition, while the marker-based approach
produced better results in those placements that it managed
to converge, it should be noted that it required a lot of
parameter fine-tuning of the SIFT detection parameters, on a
per-experiment basis, to extract matching features. In addition,
our marker-less method produces comparable accuracy results.
We can therefore conclude that our method robustly produces
high quality external calibration results with minimal human
intervention and technical knowledge.

We additionally offer some qualitative results to showcase
the effect of the post-refinement dense CRF step. Figure
7 shows the output of the CNN for a quadruple of depth
maps for experiment b, and then presents the output of the
post-refinement step that improves the quality of the labeled

regions. This helps in establishing more accurate correspon-
dences for the initial pose estimates and thus, better drives the
subsequent dense graph-based optimization step. Moreover, we
also offer qualitative results of the accuracy of the registration
for all the conducted experiments in Figure 8.

(a)

(b)

Fig. 7: Segmentation results before (a) and after (b) applying
the CRF post-refinement step.

(a) (b) (c) (d) (e)

Fig. 8: Qualitative results of the obtained external calibration
among the four sensors’ viewpoints in our five (a-e) experi-
ments. Each viewpoint is colored with a different color. On
the top row, we offer top-down views, while on the bottom
row, their respective side views are illustrated.

VI. CONCLUSION

Multi-view capturing is gaining traction with the recent
developments to AR and VR, however, multi-view systems are
difficult to engineer and develop and are usually complex to
setup and difficult to re-locate. We have designed and publicly
offer a multi-view system based on recent sensor technology
that is significantly lower cost, easier to setup and portable, in
contrast with other systems in the literature. This was achieved
through careful design decisions and the development of a
new calibration method that is easy to use and at the same
time, robust. Even though the demonstrated calibration process
relies on learning a specific placement, this does not restrict for
training new networks for other setups as well (e.g. 3 sensors
at 120o angle intervals, or 8 sensors arranged in two different



4 sensor perimeters at different heights). We believe that our
system can be used as a basis future research on production
methods, as well as for 3D content creation by freelancers and
professionals alike enabling quicker workflows due to quicker
and more flexible setup times.
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